[1] |
Michaelides S, Levizzani V, Anagnostou E, et al. Precipitation: Measurement, remote sensing, climatology and modeling[J]. Atmospheric Research, 2009, 94(4): 512-533.
doi: 10.1016/j.atmosres.2009.08.017
|
[2] |
Pipunic R C, Ryu D, Costelloe J F, et al. An evaluation and regional error modeling methodology for near-real-time satellite rainfall data over Australia[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(20): 10767-10783.
doi: 10.1002/2015JD023512
|
[3] |
Kang E, Cheng G, Lan Y, et al. A model for simulating the response of runoff from the mountainous watersheds of inland river basins in the arid area of northwest China to climatic changes[J]. Science in China Series D: Earth Sciences, 1999, 42(1): 52-63.
|
[4] |
唐国强, 万玮, 曾子悦, 等. 全球降水测量(GPM)计划及其最新进展综述[J]. 遥感技术与应用, 2015, 30(4): 607-615.
|
|
[Tang Guoqiang, Wan Wei, Zeng Ziyue, et al. An overview of the global precipitation measurement (GPM) mission and it’s latest development[J]. Remote Sensing Technology and Application, 2015, 30(4): 607-615.]
|
[5] |
田亚林, 李雪梅, 李珍, 等. 1980—2017年天山山区不同降水形态的时空变化[J]. 干旱区地理, 2020, 43(2): 308-318.
|
|
[Tian Yalin, Li Xuemei, Li Zhen, et al. Spatial and temporal variations of different precipitation types in the Tianshan Mountains from 1980 to 2017[J]. Arid Land Geography, 2020, 43(2): 308-318.]
|
[6] |
肖柳斯, 张阿思, 闵超, 等. GPM卫星降水产品在台风极端降水过程的误差评估[J]. 高原气象, 2019, 38(5): 993-1003.
doi: 10.7522/j.issn.1000-0534.2018.00143
|
|
[Xiao Liusi, Zhang Asi, Min Chao, et al. Evaluation of GPM satellite-based precipitation estimates during three tropical-related extreme rainfall events[J]. Plateau Meteorology, 2019, 38(5): 993-1003.]
doi: 10.7522/j.issn.1000-0534.2018.00143
|
[7] |
Hsu K, Gao X, Sorooshian S, et al. Precipitation estimation from remotely sensed information using artificial neural networks[J]. Journal of Applied Meteorology and Climatology, American Meteorological Society, 1997, 36(9): 1176-1190.
|
[8] |
Hsu K, Gupta H V, Gao X, et al. Estimation of physical variables from multichannel remotely sensed imagery using a neural network: Application to rainfall estimation[J]. Water Resources Research, 1999, 35(5): 1605-1618.
doi: 10.1029/1999WR900032
|
[9] |
Sorooshian S, Hsu K, Gao X, et al. Evaluation of PERSIANN system satellite-based estimates of tropical rainfall[J]. Bulletin of the American Meteorological Society, 2000, 81(9): 2035-2046.
doi: 10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2
|
[10] |
Huffman G J, Adler R F, Arkin P, et al. The global precipitation climatology project (GPCP) combined precipitation dataset[J]. Bulletin of the American Meteorological Society, 1997, 78(1): 5-20.
doi: 10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2
|
[11] |
Huffman G J, Adler R F, Bolvin D T, et al. Improving the global precipitation record: GPCP Version 2.1[J]. Geophysical Research Letters, 2009, 36(17): L17808, doi: 10.1029/2009GL040000.
doi: 10.1029/2009GL040000
|
[12] |
Huffman G J, Bolvin D T, Nelkin E J, et al. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales[J]. Journal of Hydrometeorology, American Meteorological Society, 2007, 8(1): 38-55.
|
[13] |
Huffman G J, Bolvin D T, Braithwaite D, et al. NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG)[R]. Greenbelt: National Aeronautics and Space Administration (NASA), 2014.
|
[14] |
Anjum M N, Ding Y, Shangguan D, et al. Performance evaluation of latest integrated multi-satellite retrievals for global precipitation measurement (IMERG) over the northern highlands of Pakistan[J]. Atmospheric Research, 2018, 205: 134-146.
doi: 10.1016/j.atmosres.2018.02.010
|
[15] |
Tan M L, Duan Z. Assessment of GPM and TRMM precipitation products over Singapore[J]. Remote Sensing, Multidisciplinary Digital Publishing Institute, 2017, 9(7): 720, doi: 10.3390/rs9070720.
doi: 10.3390/rs9070720
|
[16] |
Chen F, Li X. Evaluation of IMERG and TRMM 3B43 monthly precipitation products over mainland China[J]. Remote Sensing, Multidisciplinary Digital Publishing Institute, 2016, 8(6): 472, doi: 10.3390/rs8060472.
doi: 10.3390/rs8060472
|
[17] |
Xu S G, Wu C Y, Wang L, et al. A new satellite-based monthly precipitation downscaling algorithm with non-stationary relationship between precipitation and land surface characteristics[J]. Remote Sensing of Environment, 2015, 162: 119-140.
doi: 10.1016/j.rse.2015.02.024
|
[18] |
Duan Z, Bastiaanssen W G M. First results from Version 7 TRMM 3B43 precipitation product in combination with a new downscaling-calibration procedure[J]. Remote Sensing of Environment, 2013, 131: 1-13.
doi: 10.1016/j.rse.2012.12.002
|
[19] |
Wilby R L, Wigley T M L. Downscaling general circulation model output: A review of methods and limitations[J]. Progress in Physical Geography: Earth and Environment, 1997, 21(4): 530-548.
doi: 10.1177/030913339702100403
|
[20] |
Immerzeel W W, Rutten M M, Droogers P. Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula[J]. Remote Sensing of Environment, 2009, 113(2): 362-370.
doi: 10.1016/j.rse.2008.10.004
|
[21] |
Jia S, Zhu W, Lü A, et al. A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China[J]. Remote Sensing of Environment, 2011, 115(12): 3069-3079.
doi: 10.1016/j.rse.2011.06.009
|
[22] |
温伯清, 刘戎, 庞国伟, 等. GPM卫星降水数据的降尺度研究——以陕西省为例[J]. 干旱区地理, 2021, 44(3): 786-795.
|
|
[Wen Boqing, Liu Rong, Pang Guowei, et al. Downscaling study of GPM satellite precipitation data: A case study of Shaanxi Province[J]. Arid Land Geography, 2021, 44(3): 786-795.]
|
[23] |
曾昭昭, 王晓峰, 任亮. 基于GWR模型的陕西秦巴山区TRMM降水数据降尺度研究[J]. 干旱区地理, 2017, 40(1): 26-36.
|
|
[Zeng Zhaozhao, Wang Xiaofeng, Ren Liang. Spatial downscaling of TRMM rainfall data based on GWR model for Qinling-Daba Mountains in Shaanxi Province[J]. Arid Land Geography, 2017, 40(1): 26-36.]
|
[24] |
崔路明, 王思梦, 刘轶欣, 等. TRMM和GPM卫星降水数据在中国三大流域的降尺度对比研究[J]. 长江流域资源与环境, 2021, 30(6): 1317-1328.
|
|
[Cui Luming, Wang Simeng, Liu Yixin, et al. Comparative study on downscaling of TRMM and GPM satellite precipitation data in three major river basins in China[J]. Resources and Environment in the Yangtze Basin, 2021, 30(6): 1317-1328.]
|
[25] |
Bohnenstengel S I, Schlünzen K H, Beyrich F. Representativity of in situ precipitation measurements: A case study for the LITFASS area in north-eastern Germany[J]. Journal of Hydrology, 2011, 400(3): 387-395.
doi: 10.1016/j.jhydrol.2011.01.052
|
[26] |
Marzano F S, Cimini D, Montopoli M. Investigating precipitation microphysics using ground-based microwave remote sensors and disdrometer data[J]. Atmospheric Research, 2010, 97(4): 583-600.
doi: 10.1016/j.atmosres.2010.03.019
|
[27] |
Arshad A, Zhang W, Zhang Z, et al. Reconstructing high-resolution gridded precipitation data using an improved downscaling approach over the high altitude mountain regions of upper Indus Basin (UIB)[J]. Science of the Total Environment, 2021, 784: 147140, doi: 10.1016/j.scitotenv.2021.147140.
doi: 10.1016/j.scitotenv.2021.147140
|
[28] |
张小兵, 柳礼香. 1998—2018年黄河流域水资源变化特征研究[J]. 地下水, 2020, 42(5): 187-189, 291.
|
|
[Zhang Xiaobing, Liu Lixiang. Study on the change characteristics of water resources in the Yellow River Basin from 1998 to 2018[J]. Ground Water, 2020, 42(5): 187-189, 291.]
|
[29] |
王澄海, 杨金涛, 杨凯, 等. 过去近60 a黄河流域降水时空变化特征及未来30 a变化趋势[J]. 干旱区研究, 2022, 39(3): 708-722.
|
|
[Wang Chenghai, Yang Jintao, Yang Kai, et al. Changing precipitation characteristics in the Yellow River Basin in the last 60 years and tendency prediction for next 30 years[J]. Arid Zone Research, 2022, 39(3): 708-722.]
|
[30] |
杨飞, 张成业, 李军, 等. 基于GRACE的黄河流域陆地水储量时空变化研究[J]. 煤田地质与勘探, 2022, 52(4): 106-112.
|
|
[Yang Fei, Zhang Chengye, Li Jun, et al. Temporal and spatial changes of terrestrial water storage in Yellow River Basin based on GRACE[J]. Coal Geology & Exploration, 2022, 52(4): 106-112.]
|
[31] |
付含培, 王让虎, 王晓军. 1999—2018年黄河流域NDVI时空变化及驱动力分析[J]. 水土保持研究, 2022, 29(2): 145-153, 162.
|
|
[Fu Hanpei, Wang Ranghu, Wang Xiaojun. Analysis of spatiotemporal variations and driving forces of NDVI in the Yellow River Basin during 1999—2018[J]. Research of Soil and Water Conservation, 2022, 29(2): 145-153, 162.]
|
[32] |
Brunsdon C, Fotheringham S, Charlton M. Geographically weighted regression-modelling spatial non-stationarity[J]. Journal of the Royal Statistical Society. Series D (The Statistician), 1998, 47(3): 431-443.
|
[33] |
Brunsdon C, Fotheringham A S, Charlton M. Some notes on parametric significance tests for geographically weighted regression[J]. Journal of Regional Science, 1999, 39(3): 497-524.
doi: 10.1111/jors.1999.39.issue-3
|
[34] |
Mei C L, He S Y, Fang K T. A note on the mixed geographically weighted regression model[J]. Journal of Regional Science, 2004, 44(1): 143-157.
doi: 10.1111/j.1085-9489.2004.00331.x
|
[35] |
郭妍. 陕西省TRMM降水数据反演精度的时空分布特征研究[D]. 咸阳: 西北农林科技大学, 2017.
|
|
[Guo Yan. Spatlal & time distribution characteristics of retrieval accuracy on TRMM percipitation data in Shaanxi Province[D]. Xianyang: Northwest Agriculture & Forestry University, 2017.]
|