[1] |
夏军, 陈进, 佘敦先. 2022年长江流域极端干旱事件及其影响与对策[J]. 水利学报, 2022, 53(10): 1143-1153.
|
|
[Xia Jun, Chen Jin, She Dunxian. Impacts and countermeasures of extreme drought in the Yangtze River Basin in 2022[J]. Journal of Hydraulic Engineering, 2022, 53(10): 1143-1153.]
|
[2] |
Wang W, Ertsen M W, Svoboda M D, et al. Propagation of drought: From meteorological drought to agricultural and hydrological drought[J]. Advances in Meteorology, 2016, 16: 6547209, doi: 10.1155/2016/6547209.
doi: 10.1155/2016/6547209
|
[3] |
胡彩虹, 王金星, 王艺璇, 等. 水文干旱指标研究进展综述[J]. 人民长江, 2013, 44(7): 11-15.
|
|
[Hu Caihong, Wang Jinxing, Wang Yixuan, et al. Review on research of hydrological drought index[J]. Yangtze River, 2013, 44(7): 11-15.]
|
[4] |
丁晶, 袁鹏, 杨荣富, 等. 中国主要河流干旱特性的统计分析[J]. 地理学报, 1997, 52(4): 88-95.
|
|
[Ding Jing, Yuan Peng, Yang Rongfu, et al. Stochastic analysis of the drought properties of the main rivers in China[J]. Acta Geographica Sinica, 1997, 52(4): 88-95.]
|
[5] |
康玲玲, 张亚民, 王玲玲, 等. 黄河中游干旱指数计算方法探讨[J]. 人民黄河, 2004(8): 31-33.
|
|
[Kang Lingling, Zhang Yamin, Wang Lingling, et al. Discussion on the calculation method of drought index in the middle Yellow River[J]. Yellow River, 2004(8): 31-33.]
|
[6] |
Shukla S, Wood A W. Use of a standardized runoff index for characterizing hydrologic drought[J]. Geophysical Research Letters, 2008, 35(2), L02405, doi: 10.1029/2007GL032487.
doi: 10.1029/2007GL032487
|
[7] |
Sun Q H, Miao C Y, Duan Q Y, et al. A review of global precipitation data sets: Data sources, estimation, and intercomparisons[J]. Reviews of Geophysics, 2018, 56(1): 79-107.
doi: 10.1002/rog.v56.1
|
[8] |
Kidd C, Becker A, Huffman G J, et al. So, how much of the earth’s surface is covered by rain gauges?[J]. Bulletin of the American Meteorological Society, 2017, 98(1): 69-78.
doi: 10.1175/BAMS-D-14-00283.1
|
[9] |
Xu F L, Guo B, Ye B, et al. Systematical evaluation of GPM IMERG and TRMM 3B42V7 precipitation products in the Huang-Huai-Hai Plain, China[J]. Remote Sensing, 2019, 11(6): 697, doi: 10.3390/rs11060697.
doi: 10.3390/rs11060697
|
[10] |
唐国强, 万玮, 曾子悦, 等. 全球降水测量(GPM)计划及其最新进展综述[J]. 遥感技术与应用, 2015, 30(4): 607-615.
|
|
[Tang Guoqiang, Wan Wei, Zeng Ziyue, et al. An overview of the global precipitation measurement (GPM) mission and it’s latest development[J]. Remote Sensing Technology and Application, 2015, 30(4): 607-615.]
|
[11] |
Beck H E, Vergopolan N, Pan M, et al. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling[J]. Hydrology and Earth System Sciences, 2017, 21(12): 6201-6217.
doi: 10.5194/hess-21-6201-2017
|
[12] |
刘洁, 夏军, 邹磊, 等. 多卫星遥感降水数据在塔里木河流域的适用性分析[J]. 南水北调与水利科技, 2018, 16(5): 1-8.
|
|
[Liu Jie, Xia Jun, Zou Lei, et al. Applicability analysis of multi-satellite remote sensing precipitation data in Tarim River Basin[J]. South-to-North Water Transfers and Water Science & Technology, 2018, 16(5): 1-8.]
|
[13] |
Bai P, Liu X M. Evaluation of five satellite-based precipitation products in two gauge-scarce basins on the Tibetan Plateau[J]. Remote Sensing, 2018, 10(8): 1316, doi: 10.3390/rs10081316.
doi: 10.3390/rs10081316
|
[14] |
李艳忠, 星寅聪, 庄稼成, 等. 典型遥感降水产品的水文模拟性能评估[J]. 遥感学报. [2022-08-22]. https://www.ygxb.ac.cn/thesisDetails?columnId=29373073&Fpath=&graphicAbstract=www.undefined&index=0&lang=zh.
|
|
[Li Yanzhong, Xing Yincong, Zhuang Jiacheng, et al. Evaluation of typical remote sensing precipitation products in hydrological simulation[J]. National Remote Sensing Bulletin. [2022-08-22]. https://www.ygxb.ac.cn/thesisDetails?columnId=29373073&Fpath=&graphicAbstract=www.undefined&index=0&lang=zh.]
|
[15] |
Guo H, Li M, Nzabarinda V, et al. Assessment of three long-term satellite-based precipitation estimates against ground observations for drought characterization in northwestern China[J]. Remote Sensing, 2022, 14(4): 828, doi: 10.3390/rs14040828.
doi: 10.3390/rs14040828
|
[16] |
王喆, 安如, 梁欣, 等. 基于TRMM的三江源区8月份干旱特征[J]. 干旱区研究, 2013, 30(4): 719-727.
|
|
[Wang Zhe, An Ru, Liang Xin, et al. August drought in the three-river headwaters region based on TRMM data[J]. Arid Zone Research, 2013, 30(4): 719-727.]
|
[17] |
张成凤, 刘翠善, 王国庆, 等. 基于Budyko假设的黄河源区径流变化归因识别[J]. 中国农村水利水电, 2020(9): 90-94.
|
|
[Zhang Chengfeng, Liu Cuishan, Wang Guoqing, et al. Attribution of runoff variation for the Yellow River source region based on the Budyko hypothesis[J]. China Rural Water and Hydropower, 2020(9): 90-94.]
|
[18] |
韩兰英, 张强, 马鹏里, 等. 气候变暖背景下黄河流域干旱灾害风险空间特征[J]. 中国沙漠, 2021, 41(4): 225-234.
doi: 10.7522/j.issn.1000-694X.2021.00082
|
|
[Han Lanying, Zhang Qiang, Ma Pengli, et al. Characteristics of drought disasters risk in the Yellow River Basin under the climate warming[J]. Journal of Desert Research, 2021, 41(4): 225-234.]
doi: 10.7522/j.issn.1000-694X.2021.00082
|
[19] |
Li L, Shen H Y, Dai S, et al. Response of runoff to climate change and its future tendency in the source region of Yellow River[J]. Journal of Geographical Sciences, 2012, 22(3): 431-440.
doi: 10.1007/s11442-012-0937-y
|
[20] |
张成凤, 鲍振鑫, 杨晓甜, 等. 黄河源区水文气象要素演变特征及响应关系[J]. 华北水利水电大学学报(自然科学版), 2019, 40(6): 15-19.
|
|
[Zhang Chengfeng, Bao Zhenxin, Yang Xiaotian, et al. Evolution characteristics and response relationships of hydro-meteorological variables in the source region of the Yellow River[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2019, 40(6): 15-19.]
|
[21] |
陈建军, 黄莹, 赵许宁, 等. 黄河源区高寒草地植被覆盖度反演模型精度评价[J]. 科学技术与工程, 2019, 19(15): 37-45.
|
|
[Chen Jianjun, Huang Ying, Zhao Xuning, et al. Accuracy evaluation of vegetation coverage inversion model for alpine grassland in the source region of the Yellow River[J]. Science Technology and Engineering, 2019, 19(15): 37-45.]
|
[22] |
文军, 蓝永超, 苏中波, 等. 黄河源区陆面过程观测和模拟研究进展[J]. 地球科学进展, 2011, 26(6): 575-585.
|
|
[Wen Jun, Lan Yongchao, Su Zhongbo, et al. Advances in observation and modeling of land surface processes over the source region of the Yellow River[J]. Advances in Earth Science, 2011, 26(6): 575-585.]
|
[23] |
刘志红, McVicar Tim R, Van Niel T G, 等. 专用气候数据空间插值软件ANUSPLIN及其应用[J]. 气象, 2008, 34(2): 92-100.
|
|
[Liu Zhihong, McVicar Tim R, Van Niel T G, et al. Introduction of the professional interpolation software for meteorology data: ANUSPLINN[J]. Meteorological Monthly, 2008, 34(2): 92-100.]
|
[24] |
Ashouri H, Hsu K L, Sorooshian S, et al. PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies[J]. Bulletin of the American Meteorological Society, 2015, 96(1): 69-83.
doi: 10.1175/BAMS-D-13-00068.1
|
[25] |
Funk C, Peterson P, Landsfeld M, et al. The climate hazards infrared precipitation with stations: A new environmental record for monitoring extremes[J]. Scientific Data, 2015, 2: 150066, doi:10.1038/sdata.2015.66.
doi: 10.1038/sdata.2015.66
|
[26] |
Beck H E, Wood E F, Pan M, et al. MSWEP V2 global 3-hourly 0.1° precipitation: Methodology and quantitative assessment[J]. Bulletin of the American Meteorological Society, 2019, 100(3): 473-500.
doi: 10.1175/BAMS-D-17-0138.1
|
[27] |
吕爱锋, 亓珊珊. 遥感及再分析降水产品在缺资料干旱内陆盆地的适用性评估[J]. 地球信息科学学报, 2022, 24(9): 1817-1834.
doi: 10.12082/dqxxkx.2022.220356
|
|
[Lü Aifeng, Qi Shanshan. Applicability analysis of satellite-based and reanalysis precipitation products in poorly-gauged arid inland basins[J]. Journal of Geo-information Science, 2022, 24(9): 1817-1834.]
doi: 10.12082/dqxxkx.2022.220356
|
[28] |
McKee T, Doesken N, Kleist J. The relationship of drought frequency and duration to time scales[C]// Proceedings of the Eighth Conference on Applied Climatology. Boston: American Meteorological Society, 1993: 179-184.
|
[29] |
石朋, 詹慧婕, 瞿思敏, 等. 黄河源区气象干旱与水文干旱关联性分析[J]. 水资源保护, 2022, 38(3): 80-86.
|
|
[Shi Peng, Zhan Huijie, Qu Simin, et al. Correlation analysis of meteorological and hydrological droughts in Yellow River source region[J]. Water Resources Protection, 2022, 38(3): 80-86.]
|
[30] |
Thomas H. Improved methods for national water assessment[R]. Washington: US Water Resource Council, 1981.
|
[31] |
梁鹏飞, 李宗杰, 辛惠娟, 等. 黄河源区径流变化特征及影响因素研究[J]. 水资源与水工程学报, 2022, 33(4): 64-71.
|
|
[Liang Pengfei, Li Zongjie, Xin Huijuan, et al. Characteristics of runoff changes and influencing factors in the source region of the Yellow River[J]. Journal of Water Resources and Water Engineering, 2022, 33(4): 64-71.]
|
[32] |
张磊磊, 康颖, 岳青华, 等. 四种卫星降水数据在黄河源区的适用性分析[J]. 人民黄河, 2021, 43(3): 29-33.
|
|
[Zhang Leilei, Kang Ying, Yue Qinghua, et al. Analysis of the applicability of various satellite-based precipitation in the source region of Yellow River[J]. Yellow River, 2021, 43(3): 29-33.]
|
[33] |
许昕彤, 朱丽, 吕潇雨, 等. MSWEP降水产品在黄河流域气象干旱监测中的适用性评价[J]. 干旱区地理, 2023, 46(3): 371-384.
|
|
[Xu Xintong, Zhu Li, Lü Xiaoyu, et al. Applicability evaluation of MSWEP precipitation product for meteorological drought monitoring in the Yellow River Basin[J]. Arid Land Geography, 2023, 46(3): 371-384.]
|
[34] |
Li Y Z, Zhuang J C, Bai P, et al. Evaluation of three long-term remotely sensed precipitation estimates for meteorological drought monitoring over China[J]. Remote Sensing, 2023, 15(1): 86, doi:10.3390/rs15010086.
doi: 10.3390/rs15010086
|
[35] |
谭剑波, 李爱农, 雷光斌. 青藏高原东南缘气象要素Anusplin和Cokriging空间插值对比分析[J]. 高原气象, 2016, 35(4): 875-886.
doi: 10.7522/j.issn.1000-0534.2015.00037
|
|
[Tan Jianbo, Li Ainong, Lei Guangbin. Contrast on Anusplin and Cokriging meteorological spatial interpolation in southeastern margin of Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2016, 35(4): 875-886.]
doi: 10.7522/j.issn.1000-0534.2015.00037
|
[36] |
Ma Y Z, Yang Y, Han Z Y, et al. Comprehensive evaluation of ensemble multi-satellite precipitation dataset using the dynamic Bayesian model averaging scheme over the Tibetan Plateau[J]. Journal of Hydrology, 2018, 556: 634-644.
doi: 10.1016/j.jhydrol.2017.11.050
|
[37] |
Zhou S Q, Wang Y, Yuan Q Q, et al. Spatiotemporal estimation of 6-hour high-resolution precipitation across China based on Himawari-8 using a stacking ensemble machine learning model[J]. Journal of Hydrology, 2022, 609: 127718, doi: 10.1016/j.jhydrol.2022.127718.
doi: 10.1016/j.jhydrol.2022.127718
|