[1] |
陈丙寅, 杨辽, 陈曦, 等. 基于改进型TVDI在干旱区旱情监测中的应用研究[J]. 干旱区地理, 2019, 42(4):902-913.
|
|
[ Chen Bingyin, Yang Liao, Chen Xi, et al. Application of modified TVDI in drought monitoring in arid areas[J]. Arid Land Geography, 2019, 42(4):902-913. ]
|
[2] |
张强, 张良, 崔显成, 等. 干旱监测与评价技术的发展及其科学挑战[J]. 地球科学进展, 2011, 26(7):763-778.
|
|
[ Zhang Qiang, Zhang Liang, Cui Xiancheng, et al. Progresses and challenges in drought assessment and monitoring[J]. Advances in Earth Science, 2011, 26(7):763-778. ]
|
[3] |
沙莎, 郭铌, 李耀辉, 等. 植被状态指数VCI与几种气象干旱指数的对比——以河南省为例[J]. 冰川冻土, 2013, 35(4):990-998.
|
|
[ Sha Sha, Guo Ni, Li Yaohui, et al. Comparison of the vegetation condition index with meteorological drought indices: A case study in Henan Province[J]. Journal of Glaciology and Geocryology, 2013, 35(4):990-998. ]
|
[4] |
Adnan S, Uliah K, Gao S, et al. Shifting of agro-climatic zones, their drought vulnerability, and precipitation and temperature trends in Pakistan[J]. International Journal of Climatology, 2017, 37(Suppl. 1):529-543.
doi: 10.1002/joc.2017.37.issue-S1
|
[5] |
冯冬蕾, 程志刚, 赵雷, 等. 4种干旱判别指数在东北地区适用性分析[J]. 干旱区地理, 2020, 43(2):371-379.
|
|
[ Feng Donglei, Cheng Zhigang, Zhao Lei, et al. Applicability analysis of four drought indexes in northeast China[J]. Arid Land Geography, 2020, 43(2):371-379. ]
|
[6] |
邹磊, 余江游, 夏军, 等. 基于SPEI的渭河流域干旱时空变化特征分析[J]. 干旱区地理, 2020, 43(2):329-338.
|
|
[ Zou Lei, Yu Jiangyou, Xia Jun, et al. Temporal-spatial variation characteristics of drought in the Weihe River Basin based on SPEI[J]. Arid Land Geography, 2020, 43(2):329-338. ]
|
[7] |
Lu J, Carbong G J, Gao P. Mapping the agricultural drought based on the long-term AVHRR NDVI and north American regional reanalysis(NARR) in the United States, 1981—2013[J]. Applied Geography, 2019, 104:10-20.
doi: 10.1016/j.apgeog.2019.01.005
|
[8] |
Zhang X, Obringer R, Wei C, et al. Droughts in India from 1981 to 2013 and implications to wheat production[J]. Scientific Reports, 2017, 7:44552, doi: 10.1038/srep44552.
doi: 10.1038/srep44552
|
[9] |
Shah S U, Iqbal J. Spatial-temporal variations of vegetation and drought severity across Tharparkar, Pakistan, using remote sensing-derived indices[J]. Journal of Applied Remote Sensing, 2016, 10(3):036005, doi: 10.1117/1.JRS.10.036005.
doi: 10.1117/1.JRS.10.036005
|
[10] |
Adnan S, Uliah K, Gao S. Characterization of drought and its assessment over Sindh, Pakistan during 1951—2010[J]. Journal of Meteorological Research, 2015, 29(5):837-857.
doi: 10.1007/s13351-015-4113-z
|
[11] |
Khan F K. Oxford school atlas for Pakistan[M]. Oxford: Oxford University Press, 2008.
|
[12] |
Kern A, Marjanovic H, Barcza Z. Evaluation of the quality of NDVI3g dataset against collection 6 MODIS NDVI in central Europe between 2000 and 2013[J]. Remote Sensing, 2016, 8(11):955, doi: 10.3390/rs8110955.
doi: 10.3390/rs8110955
|
[13] |
蔡斌, 陆文杰, 郑新江. 气象卫星条件植被指数监测土壤状况[J]. 国土资源遥感, 1995(4):45-50.
|
|
[ Cai Bin, Lu Wenji, Zheng Xinjiang. Using meteorological satellite’s VCI to monitor soil state[J]. Remote Sensing for Land and Resources, 1995(4):45-50. ]
|
[14] |
Unganai L S, Kogan F N. Drought monitoring and corn yield estimation in southern Africa from AVHRR data[J]. Remote Sensing of Environment, 1998, 63(3):219-232.
doi: 10.1016/S0034-4257(97)00132-6
|
[15] |
Fensholt R, Horion S, Tagesson T, et al. Global-scale mapping of changes in ecosystem functioning from earth observation-based trends in total and recurrent vegetation[J]. Global Ecology and Biogeography, 2015, 24:1003-1017.
doi: 10.1111/geb.2015.24.issue-9
|
[16] |
Xu C, Liu H, Wiliams A P, et al. Trends toward an earlier peak of the growing season in northern Hemisphere mid-latitudes[J]. Global Change Biology, 2016, 22:2852-2860.
doi: 10.1111/gcb.2016.22.issue-8
|
[17] |
Zeng F W, Collatz G J, Pinzon J E, et al. Evaluating and quantifying the climate-driven interannual variability in global inventory modeling and mapping studies(GIMMS) normalized difference vegetation index(NDVI3g) at global scales[J]. Remote Sensing, 2016(5):3918-3950.
|
[18] |
Piao S, Mohammat A, Fang J, et al. NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China[J]. Global Environmental Change, 2006, 16(4):340-348.
doi: 10.1016/j.gloenvcha.2006.02.002
|
[19] |
Weedon G P, Gomes S, Viterbo P. The WATCH forcing data 1958—2001: A meteorological forcing dataset for land surface and hydrological models[R]. Watch Technical Report, 2010.
|
[20] |
Rigden A J, Salvucci G D, Dara E, et al. Partitioning evapotranspiration over the continental United States using weather station data[J]. Geophysical Research Letters, 2018, 45:9605-9613.
doi: 10.1029/2018GL079121
|
[21] |
Kogan F, Sullivan J. Development of global drought watch system using NOAA/AVHRR data[J]. Advances in Space Research, 1993, 13(5):219-222.
doi: 10.1016/0273-1177(93)90548-P
|
[22] |
Kogan F. Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data[J]. Bulletin of the American Meteorological Society, 1995, 76(5):655-668.
doi: 10.1175/1520-0477(1995)076<0655:DOTLIT>2.0.CO;2
|
[23] |
Bajgiran P R, Daevishsefat A A, Khalili A, et al. Using AVHRR-based vegetation indices for drought monitoring in the northwest of Iran[J]. Journal of Arid Environments, 2008, 72(6):1086-1096.
doi: 10.1016/j.jaridenv.2007.12.004
|
[24] |
Kuri F, Murwira A, Murwirs K S, et al. Predicting maize yield in Zimbabwe using dry dekads derived from remotely sensed vegetation condition index[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 33(12):39-46.
doi: 10.1016/j.jag.2014.04.021
|
[25] |
李维娇, 王云鹏. 基于VCI的2003—2017年广东省干旱时空变化特征分析[J]. 华南师范大学学报(自然科学版), 2020, 52(3):85-91.
|
|
[ Li Weijiao, Wang Yunpeng. An analysis of the spatial-temporal characteristics of drought in Guangdong based on vegetation condition index from 2003 to 2017[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(3):85-91. ]
|
[26] |
Kogan F. Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data[J]. Bulletin of the American Meteorological Society, 1995, 76(5):655-668.
doi: 10.1175/1520-0477(1995)076<0655:DOTLIT>2.0.CO;2
|
[27] |
张继权, 李宁. 主要气象灾害风险评价与管理的数量化方法及其应用[M]. 北京: 北京师范大学出版社, 2007.
|
|
[ Zhang Jiquan, Li Ning. Quantitative methods and applications of risk assessment and management on main meteorological risks[M]. Beijing: Beijing Normal University Publishing House, 2007. ]
|
[28] |
葛全胜, 邹铭, 郑景云, 等. 中国自然灾害风险综合评估初步研究[M]. 北京: 科学出版社, 2008.
|
|
[ Ge Quansheng, Zhou Ming, Zheng Jingyun, et al. Integrated assessment of natural disaster risk in China[M]. Beijing: Science Press, 2008. ]
|
[29] |
姚玉璧, 张强, 李耀辉, 等. 干旱灾害风险评估技术及其科学问题与展望[J]. 资源科学, 2013, 35(9):1884-1897.
|
|
[ Yao Yubi, Zhang Qiang, Li Yaohui, et al. Drought risk assessment technological progresses and problems[J]. Resources Science, 2013, 35(9):1884-1897. ]
|
[30] |
Mumtaz R, Baig S, Fatima I. Analysis of meteorological variations on wheat yield and its estimation using remotely sensed data: A case study of selected districts of Punjab Province, Pakistan (2001—2014)[J]. Italian Journal of Agronomy, 2017, 12(3):254-270.
|
[31] |
Nyvall J. Soil water storage capacity and available soil moisture[J]. British Columbia, Ministry of Agriculture, Food and Fisheries, 2002, 4(619):2-5.
|
[32] |
Parc. National agro-ecological resources database (Vol. Version 1.1): Natural resources division[R]. Islamabad: Pakistan Agricultural Research Council, 2009.
|
[33] |
Pds. Punjab development statistics 2011[R]. Lahore: Bureau of Statistics, Government of the Punjab, 2011.
|
[34] |
Mowp. Handbook on water statistics of Pakistan[M]. Islamabad: Ministry of Water and Power, Pakistan, 2012.
|
[35] |
Siddiqi A, Wescoat J L. Energy use in large-scale irrigated agriculture in the Punjab Province of Pakistan[J]. Water International, 2013, 38(5):571-586.
doi: 10.1080/02508060.2013.828671
|
[36] |
Tsakiris G D, Adnan S, Khan A H. Effective rainfall for irrigated agriculture plains of Pakistan[J]. Pakistan Journal of Meteorology, 2009(6):61-72.
|
[37] |
Huang Y, Chen L, Fu B, et al. The wheat yields and water-use efficiency in the Loess Plateau: Straw mulch and irrigation effects[J]. Agricultural Water Management, 2005, 72(3):209-222.
doi: 10.1016/j.agwat.2004.09.012
|
[38] |
Hao B Z, Xue Q W, Marek T H, et al. Soil water extraction, water use, and grain yield by drought-tolerant maize on the Texas High Plains[J]. Agricultural Water Management, 2015, 155:11-21.
doi: 10.1016/j.agwat.2015.03.007
|
[39] |
Li S, Li Y, Li X, et al. Effect of straw management on carbon sequestration and grain production in a maize-wheat cropping system in Anthrosol of the Guanzhong Plain[J]. Soil and Tillage Research, 2016, 157:43-51.
doi: 10.1016/j.still.2015.11.002
|
[40] |
Wang G, Liang Y, Zhang Q, et al. Mitigated CH4 and N2O emissions and improved irrigation water use efficiency in winter wheat field with surface drip irrigation in the North China Plain[J]. Agricultural Water Management, 2016, 163:403-407.
doi: 10.1016/j.agwat.2015.10.012
|
[41] |
Mekonnen D K, Channa H, Ringler C. The impact of water users’ associations on the productivity of irrigated agriculture in Pakistani Punjab[J]. Water International, 2015, 40(5-6):733-747.
doi: 10.1080/02508060.2015.1094617
|
[42] |
王春雨, 王军邦, 孙晓芳, 等. 孟印缅地区农田生产力脆弱性变化及气候影响机制——基于1982—2015年GIMMS3g植被指数[J]. 生态学报, 2019, 39(21):7793-7804.
|
|
[ Wang Chunyu, Wang Junbang, Sun Xiaofang, et al. Vulnerability of farmland productivity and climatic impact in Bangladesh, India, and Myanmar, based on GIMMS3g NDVI in 1982—2015[J]. Acta Ecologica Sinica, 2019, 39(21):7793-7804. ]
|
[43] |
赵健赟, 张波, 杨静. 基于GIMMS NDVI3g的青海高原植被分布特征研究[J]. 测绘工程, 2019, 28(5):8-13.
|
|
[ Zhao Jianyun, Zhang Bo, Yang Jing. Engineering go surveying and mapping vegetationd is tribution characteristics of Qinghai Plateau based on GIMMS NDVI3g[J]. Engineering of Surveying and Mapping, 2019, 28(5):8-13. ]
|