干旱区地理 ›› 2024, Vol. 47 ›› Issue (11): 1816-1827.doi: 10.12118/j.issn.1000-6060.2024.175
仇泽炜1,2(), 方功焕1(), 陈亚宁1, 朱成刚1, 梁文婷1,2, 邸彦峰1,2, 吕浩东1,2
收稿日期:
2024-03-18
修回日期:
2024-06-11
出版日期:
2024-11-25
发布日期:
2024-12-03
通讯作者:
方功焕(1989-),女,博士,副研究员,主要从事干旱区高寒山区水文过程研究. E-mail: fanggh@ms.xjb.ac.cn作者简介:
仇泽炜(1998-),女,硕士研究生,主要从事干旱区水资源与生态水文研究. E-mail: qiuzewei22@mails.ucas.ac.cn
基金资助:
QIU Zewei1,2(), FANG Gonghuan1(), CHEN Yaning1, ZHU Chenggang1, LIANG Wenting1,2, DI Yanfeng1,2, LYU Haodong1,2
Received:
2024-03-18
Revised:
2024-06-11
Published:
2024-11-25
Online:
2024-12-03
摘要:
洪水作为最具破坏力的自然灾害之一,在全球变暖背景下,高海拔山区洪水发生的强度和时间已经发生了显著变化,对人类社会和生态系统造成了深远的影响。因此,利用MissForest方法填补昆仑山北坡6大流域的出山口日流量序列,分析6条源流6个出山口站点1961—2022年的洪水强度、发生时间、起涨消退时间以及年最大洪水日平均流量的变化趋势。结果表明:(1)97%的年最大1日流量(AMF)事件发生在夏季,乌鲁瓦提和同古孜洛克站的AMF呈增加趋势,而皮山、策勒、努努买买提兰干和且末站呈减少趋势,除皮山和乌鲁瓦提站外,其余站点AMF变化均显著。所有站点的春季最大1日流量(AMFSp)均呈增加趋势,其中,乌鲁瓦提、同古孜洛克和努努买买提兰干站显著增加。洪水发生时间方面,除皮山站的年最大1日流量发生的日期(AMFD)呈现出显著延迟趋势外,其余5个站点的AMFD显示出不显著的提前趋势;对于春季最大1日流量发生的日期(AMFDSp),6个站点均呈现出不显著提前的趋势。(2)在洪水起涨时间上,同古孜洛克和且末站延长,皮山等4个站点缩短;洪水消退时间上,皮山和策勒站延长,其他站点缩短,整体变化趋势不显著。年最大洪水日平均流量方面,皮山站显著增加,努努买买提兰干和且末站显著减少,其他站点减少趋势不显著。研究成果对提升干旱区水文生态效益、防洪减灾及区域水管理和灾害风险评估具有重要意义。
仇泽炜, 方功焕, 陈亚宁, 朱成刚, 梁文婷, 邸彦峰, 吕浩东. 昆仑山北坡高山流域洪水变化特征[J]. 干旱区地理, 2024, 47(11): 1816-1827.
QIU Zewei, FANG Gonghuan, CHEN Yaning, ZHU Chenggang, LIANG Wenting, DI Yanfeng, LYU Haodong. Characteristics of flood change in alpine watershed on the northern slope of Kunlun Mountains[J]. Arid Land Geography, 2024, 47(11): 1816-1827.
表4
各水文站最大洪水变化趋势的Mann-Kendall检验结果"
水文站 | 指标 | Zc值 | 趋势 | 显著性 | 水文站 | 指标 | Zc值 | 趋势 | 显著性 | |
---|---|---|---|---|---|---|---|---|---|---|
皮山 | AMF | -0.373 | ↓ | 不显著 | 策勒 | AMF | -2.900*** | ↓ | 99% | |
AMFSp | 0.541 | ↑ | 不显著 | AMFSp | 0.367 | ↑ | 不显著 | |||
AMFD | 1.476 | → | 90% | AMFD | -0.075 | ← | 不显著 | |||
AMFDSp | -1.085 | ← | 不显著 | AMFDSp | -1.073 | ← | 不显著 | |||
乌鲁瓦提 | AMF | 0.560 | ↑ | 不显著 | 努努买买提兰干 | AMF | -3.435*** | ↓ | 99% | |
AMFSp | 2.352*** | ↑ | 99% | AMFSp | 1.817** | ↑ | 95% | |||
AMFD | -0.878 | ← | 不显著 | AMFD | -0.554 | ← | 不显著 | |||
AMFDSp | -0.306 | ← | 不显著 | AMFDSp | -1.136 | ← | 不显著 | |||
同古孜洛克 | AMF | 2.172** | ↑ | 95% | 且末 | AMF | -2.489*** | ↓ | 99% | |
AMFSp | 3.031*** | ↑ | 99% | AMFSp | 0.635 | ↑ | 不显著 | |||
AMFD | -0.785 | ← | 不显著 | AMFD | -0.392 | ← | 不显著 | |||
AMFDSp | -0.630 | ← | 不显著 | AMFDSp | -0.891 | ← | 不显著 |
表5
1961—2022年各水文站年最大洪水起涨时间和消退时间变化趋势"
水文站 | 1961—1992年 | 1993—2022年 | |||||
---|---|---|---|---|---|---|---|
平均起涨时间/d | 平均消退时间/d | 年最大洪水日平均流量/m3·s-1 | 平均起涨时间/d | 平均消退时间/d | 年最大洪水日平均流量/m3·s-1 | ||
皮山 | 8.09 | 7.19 | 38.37 | 7.47↓ | 9.43↑ | 44.23↑** | |
乌鲁瓦提 | 9.90 | 8.38 | 303.59 | 9.70↓ | 7.93↓ | 288.62↓ | |
同古孜洛克 | 10.72 | 10.00 | 366.99 | 10.80↑ | 8.60↓ | 364.45↓ | |
策勒 | 7.25 | 7.03 | 18.06 | 6.53↓ | 7.50↑ | 14.70↓ | |
努努买买提兰干 | 9.78 | 8.19 | 88.31 | 8.97↓ | 7.13↓ | 74.36↓** | |
且末 | 9.34 | 9.87 | 43.22 | 10.22↑ | 8.00↓ | 40.31↓*** |
[1] | Dottori F, Szewczyk W, Ciscar J C, et al. Increased human and economic losses from river flooding with anthropogenic warming[J]. Nature Climate Change, 2018, 8: 781-786. |
[2] |
Alifu H, Hirabayashi Y, Imada Y, et al. Enhancement of river flooding due to global warming[J]. Scientific Reports, 2022, 12(1): 20687, doi: 10.1038/s41598-022-25182-6.
pmid: 36450837 |
[3] | IPCC. Climate change 2022: Mitigation of climate change[R]. Cambridge: IPCC, 2022. |
[4] |
Tabari H. Climate change impact on flood and extreme precipitation increases with water availability[J]. Scientific Reports, 2020, 10(1): 13768, doi: 10.1038/s41598-020-74038-4.
pmid: 32792563 |
[5] |
Lukas G, Julien B, Do H X, et al. Globally observed trends in mean and extreme river flow attributed to climate change[J]. Science, 2021, 371(6534): 1159-1162.
doi: 10.1126/science.aba3996 pmid: 33707264 |
[6] | Nsaaer N, Naresh D. Recent trends in the frequency and duration of global floods[J]. Earth System Dynamics, 2018, 9(2): 757-783. |
[7] | Zhang S L, Ahou L M, Yang Y T, et al. Reconciling disagreement on global river flood changes in a warming climate[J]. Nature Climate Change, 2022, 12: 1160-1167. |
[8] |
Fang G H, Yang J, Li Z, et al. Shifting in the global flood timing[J]. Scientific Reports, 2022, 12(1): 18853, doi: 10.1038/s41598-022-23748-y.
pmid: 36344741 |
[9] | Han J, Liu Z, Woods R, et al. Streamflow seasonality in a snow-dwindling world[J]. Nature, 2024, 629(8014): 1075-1081. |
[10] | Do H X, Zhao F, Westra S, et al. Historical and future changes in global flood magnitude-evidence from a model-observation investigation[J]. Hydrology and Earth System Sciences, 2020, 24(3): 1543-1564. |
[11] | Chou C, Chiang J C H, Lan C W, et al. Increase in the range between wet and dry season precipitation[J]. Nature Geoscience, 2013, 6(4): 263-267. |
[12] | Wasko C, Guo D L, Ho M, et al. Diverging projections for flood and rainfall frequency curves[J]. Journal of Hydrology, 2023, 620: 129403, doi: 10.1016/j.jhydrol.2023.129403. |
[13] | Li D F, Lu X X, Walling D E, et al. High Mountain Asia hydropower systems threatened by climate-driven landscape instability[J]. Nature Geoscience, 2022, 15(7): 520-530. |
[14] | Pepin N, Bradley R S, Diaz H F, et al. Elevation-dependent warming in mountain regions of the world[J]. Nature Climate Change, 2015, 5(5): 424-430. |
[15] | Zhang Q, Gu X H, Singh V P, et al. Magnitude, frequency and timing of floods in the Tarim River Basin, China: Changes, causes and implications[J]. Global and Planetary Change, 2016, 139: 44-55. |
[16] | Fang G H, Li Z, Yang J, et al. Changes in flooding in the alpine catchments of the Tarim River Basin, Central Asia[J]. Journal of Flood Risk Management, 2023, 16(1): e12869, doi: 10.1111/jfr3.12869. |
[17] | Luo M, Meng F H, Liu T, et al. Multi-model ensemble approaches to assessment of effects of local climate change on water resources of the Hotan River Basin in Xinjiang, China[J]. Water, 2017, 9(8): 584, doi: 10.3390/w9080584. |
[18] | Wang N, Liu W B, Wang H, et al. Improving streamflow and flood simulations in three headwater catchments of the Tarim River based on a coupled glacier-hydrological model[J]. Journal of Hydrology, 2021, 603: 127048, doi: 10.1016/j.jhydrol.2021.127048. |
[19] | 陈亚宁. 中国西北干旱区水资源研究[M]. 北京: 科学出版社, 2014: 2-20. |
[Chen Yaning. Research on water resources in the arid region of northwest China[M]. Beijing: Science Press, 2014: 2-20.] | |
[20] | Sun P, Xiao M Z, Zhang Q, et al. Advance in hydrometeorological extremes research[J]. Journal of Wuhan University (Natural Science Edition), 2018, 64(1): 28-36. |
[21] |
Zhang Q G, Zhang F, Kang S C, et al. Melting glaciers: Hidden hazards[J]. Science, 2017, 356(6337): 495-495.
doi: 10.1126/science.aan4118 pmid: 28473554 |
[22] |
Wu Y P, Yin X W, Zhou G Y, et al. Rising rainfall intensity induces spatially divergent hydrological changes within a large river basin[J]. Nature Communications, 2024, 15(1): 823, doi: 10.1038/s41467-023-44562-8.
pmid: 38280877 |
[23] | 吴素芬, 张国威. 新疆河流洪水与洪灾的变化趋势[J]. 冰川冻土, 2003, 25(2): 199-203. |
[Wu Sufen, Zhang Guowei. Preliminary approach on the floods and their calamity changing tendency in Xinjiang region[J]. Journal of Glaciology and Geocryology, 2003, 25(2): 199-203.] | |
[24] | 吴佳, 高学杰. 一套格点化的中国区域逐日观测资料及与其它资料的对比[J]. 地球物理学报, 2013, 56(4): 1102-1111. |
[Wu Jia, Gao Xuejie. A gridded daily observation dataset over China region and comparison with the other datasets[J]. Chinese Journal of Geophysics, 2013, 56(4): 1102-1111.] | |
[25] | Xu Y, Gao X J, Shen Y, et al. A daily temperature dataset over China and its application in validating a RCM simulation[J]. Advances in Atmospheric Sciences, 2009, 26(4): 763-772. |
[26] | 吴立宗. 中国冰川编目信息系统[M]. 北京: 海洋出版社, 2004. |
[Wu Lizong. China glacier cataloging information system[M]. Beijing: China Ocean Press, 2004.] | |
[27] | 吴立宗. 中国第一次冰川编目数据集[DB/OL]. [2020-01-19]. http://cryosphere.casnw.net/portal/metadata/bec2973b-e989-4058-b768-5e7d2bed14ab. |
[Wu Lizong. Dataset of the first glacier inventory in China[DB/OL]. [2020-01-19]. http://cryosphere.casnw.net/portal/metadata/bec2973b-e989-4058-b768-5e7d2bed14ab.] | |
[28] | 刘时银, 郭万钦, 许君利. 中国第二次冰川编目数据集(V1.0)(2006—2011)[DB/OL]. [2019-10-11]. http://cryosphere.casnw.net/portal/metadata/6d44fd19-64d7-4af1-8e81-5fa717585b5b. |
[Liu Shiyin, Guo Wanqin, Xu Junli. The second glacier inventory dataset of China (version 1.0) (2006—2011)[DB/OL]. [2019-10-11]. http://cryosphere.casnw.net/portal/metadata/6d44fd19-64d7-4af1-8e81-5fa717585b5b.] | |
[29] | 刘时银, 张勇, 刘巧, 等. 气候变化对冰川影响与风险研究[M]. 北京: 科学出版社, 2017. |
[Liu Shiyin, Zhang Yong, Liu Qiao, et al. Impacts and risks of climate change on glaciers[M]. Beijing: Science Press, 2017.] | |
[30] | Guo W Q, Liu S Y, Xu J L, et al. The second Chinese glacier inventory: Data, methods and results[J]. Journal of Glaciology, 2015 61(226): 357-372. |
[31] |
刘时银, 姚晓军, 郭万钦, 等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015, 70(1): 3-16.
doi: 10.11821/dlxb201501001 |
[Liu Shiyin, Yao Xiaojun, Guo Wanqin, et al. The contemporary glaciers in China based on the Second Chinese Glacier Inventory[J]. Acta Geographica Sinica, 2015, 70(1): 3-16.]
doi: 10.11821/dlxb201501001 |
|
[32] | 刘纪远, 匡文慧, 张增祥, 等. 20世纪80年代末以来中国土地利用变化的基本特征与空间格局[J]. 地理学报, 2014, 69(1): 3-14. |
[Liu Jiyuan, Kuang Wenhui, Zhang Zengxiang, et al. Spatiotemporal characteristics, patterns and causes of land use changes in China since the late 1980s[J]. Acta Geographica Sinica, 2014, 69(1): 3-14.]
doi: 10.11821/dlxb201401001 |
|
[33] |
Stekhoven D J, Buehlmann P. MissForest-non-parametric missing value imputation for mixed-type data[J]. Bioinformatics, 2012, 28(1): 112-118.
doi: 10.1093/bioinformatics/btr597 pmid: 22039212 |
[34] | Khampuengson T, Wang W. Novel methods for imputing missing values in water level monitoring data[J]. Water Resources Management, 2023, 37: 851-878. |
[35] | Lukas S, Markus D, Sophie B. Evaluating the performance of random forest for large-scale flood discharge simulation[J]. Journal of Hydrology, 2023, 590: 125531, doi: 10.1016/j.jhydrol.2020.125531. |
[36] | Huang H, Liang Z M, Li B Q, et al. Combination of multiple data-driven models for long-term monthly runoff predictions based on Bayesian model averaging[J]. Water Resources Management, 2019, 33(9): 3321-3338. |
[37] | Hristos T, Georgia P, Andreas L. Super ensemble learning for daily streamflow forecasting: Large-scale demonstration and comparison with multiple machine learning algorithms[J]. Neural Computing and Applications, 2021, 33(8): 3053-3068. |
[38] | Saini P, Nagpal B. Analysis of missing data and comparing the accuracy of imputation methods using wheat crop data[J]. Multimedia Tools and Applications, 2024, 83: 40393-40414. |
[39] | Hasan M K, Abu S M M, Jungpil S, et al. A lite-weight clinical features based chronic kidney disease diagnosis system using 1D convolutional neural network[C]// 2022 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE). Gazipur:IEEE, 2022: 1-5. |
[40] | Alkabbani H, Ramadan A, Zhu Q, et al. An improved air quality index machine learning-based forecasting with multivariate data imputation approach[J]. Atmosphere, 2022, 13(7): 1144, doi: 10.3390/atmos13071144. |
[41] | Jānis B, Inga R, Ezra H, et al. Assessing automated gap imputation of regional scale groundwater level data sets with typical gap patterns[J]. Journal of Hydrology, 2023, 620: 129424, doi: 10.1016/j.jhydrol.2023.129424. |
[42] | Tang F, Hemant I. Random forest missing data algorithms[J]. Atatistical Analysis and Data Mining, 2017, 10(6): 363-377. |
[43] | Arriagada P, Karelovic B, Link O. Automatic gap-filling of daily streamflow time series in data-scarce regions using a machine learning algorithm[J]. Journal of Hydrology, 2021, 598: 126454, doi: 10.1016/j.jhydrol.2021.126454. |
[44] | Zhou Y Y, Tang Q H, Zhao G. Gap infilling of daily streamflow data using a machine learning algorithm (MissForest) for impact assessment of human activities[J]. Journal of Hydrology, 2023, 627: 130404, doi: 10.1016/j.jhydrol.2023.130404. |
[45] | Moriasi D N, Arnold J G, Van L M W, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transactions of the ASABE, 2007, 50(3): 885-900. |
[46] | Knoben W J M, Freer J E, Woods R A. Technical note: Inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta efficiency scores[J]. Hydrology and Earth System Sciences, 2019, 23(10): 4323-4331. |
[47] | Feyen L, Dankers R. Impact of global warming on streamflow drought in Europe[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(17): D17116, doi: 10.1029/2008JD011438. |
[48] | Mallakpour I, Villarini G. The changing nature of flooding across the central United States[J]. Nature Climate Change, 2015, 5(3): 250-254. |
[49] | Lang M, Ouarda T B M J, Bobée B. Towards operational guidelines for over-threshold modeling[J]. Journal of Hydrology, 1999, 255(3-4): 103-117. |
[50] | He G C, Chen Y N, Li Z, et al. Exploring denoising diffusion probabilistic model for daily streamflow gap filling in Central Asia typical watersheds[J]. Journal of Hydrology: Regional Studies, 2024, 52: 101701, doi: 10.1016/j.ejrh.2024.101701. |
[51] | Liang W T, Chen Y N, Fang G H, et al. Machine learning method is an alternative for the hydrological model in an alpine catchment in the Tianshan region, Central Asia[J]. Journal of Hydrology: Regional Studies, 2023, 49: 101492, doi: 10.1016/j.ejrh.2023.101492. |
[52] | 毛炜峄, 玉素甫·阿布都拉, 程鹏, 等. 1999年夏季中昆仑山北坡诸河冰雪大洪水及其成因分析[J]. 冰川冻土, 2007, 29(4): 553-558. |
[Mao Weiyi, Abudula Yusup, Cheng Peng, et al. Extreme flood events in 1999 and their formation conditions in northern slopes of the middle Kunlun Mountains[J]. Journal of Glaciology and Geocryology, 2007, 29(4): 553-558.] | |
[53] | Su F G, Pritchard H D, Yao T D, et al. Contrasting fate of western Third Pole’s water resources under 21st century climate change[J]. Earths Future, 2022, 10(9): e2022EF002776, doi: 10.1029/2022EF002776. |
[54] | IPCC. AR6 synthesis report: Climate change 2023[R]. Geneva: IPCC, 2023. |
[55] | 刘俊国, 陈鹤, 田展. IPCC AR6报告解读: 气候变化与水安全[J]. 气候变化研究进展, 2022, 18(4): 405-413. |
[Liu Junguo, Chen He, Tian Zhan. Interpretation of IPCC AR6: Climate change and water security[J]. Climate Change Research, 2022, 18(4): 405-413.] | |
[56] | Hock R, Rasul G, Adler C, et al. IPCC special report on the ocean and cryosphere in a changing climate[R]. Cambridge: IPCC, 2019. |
[57] | Fowler H J, Lenderink G, Prein A F, et al. Anthropogenic intensification of short-duration rainfall extremes[J]. Nature Reviews Earth & Environment, 2021, 2(2): 107-122. |
[58] | Tradowsky J S, Philip S Y, Kreienkamp F, et al. Attribution of the heavy rainfall events leading to severe flooding in western Europe during July 2021[J]. Climatic Change, 2023, 176(7): 90, doi: 10.1007/s10584-023-03502-7. |
[59] | Bazai N A, Cui P, Carling P A, et al. Increasing glacial lake outburst flood hazard in response to surge glaciers in the Karakoram[J]. Earth-Science Reviews, 2021, 212: 103432, doi: 10.1016/j.earscirev.2020.103432. |
[60] | Zheng G X, Allen S K, Bao A, et al. Increasing risk of glacial lake outburst floods from future Third Pole deglaciation[J]. Nature Climate Change, 2021, 11(5): 411-417. |
[61] | Liu Y, Yao Y Z, Wang N, et al. Mapping the risk zoning of storm flood disaster based on heterogeneous data and a machine learning algorithm in Xinjiang, China[J]. Journal of Flood Risk Management, 2021, 14(1): e12671, doi: 10.1111/jfr3.12671. |
[62] | Fang G H, Yang J, Chen Y N, et al. How hydrologic processes differ spatially in a large basin: Multisite and multiobjective modeling in the Tarim River Basin[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(14): 7098-7113. |
[63] | 周聿超. 新疆河流水文水资源[M]. 乌鲁木齐: 新疆科技卫生出版社, 1999: 40-59. |
[Zhou Yuchao. Hydrology and water resources of Xinjiang river[M]. Urumqi: Xinjiang Science and Technology Health Press, 1999: 40-59.] | |
[64] | Guan J Y, Yao J Q, Li M Y, et al. Historical changes and projected trends of extreme climate events in Xinjiang, China[J]. Climate Dynamics, 2022, 59(5): 1753-1774. |
[65] | Wei W, Zou S, Duan W L, et al. Spatiotemporal variability in extreme precipitation and associated large-scale climate mechanisms in Central Asia from 1950 to 2019[J]. Journal of Hydrology, 2023, 620: 129417, doi: 10.1016/j.jhydrol.2023.129417. |
[66] | Wang Q, Zhai P M, Qin D H. New perspectives on ‘warming-wetting’ trend in Xinjiang, China[J]. Advances in Climate Change Research, 2020, 11(3): 252-260. |
[67] | Feng F, Xu S G, Liu J W, et al. Comprehensive benefit of flood resources utilization through dynamic successive fuzzy evaluation model: A case study[J]. Science China Technological Sciences, 2010, 53(2): 529-538. |
[68] | Berghuijs W R, Woods R A, Hutton C J, et al. Dominant flood generating mechanisms across the United States[J]. Geophysical Research Letters, 2016, 43(9): 4382-4390. |
[69] | Shuster W D, Zhang Y, Roy A H, et al. Characterizing storm hydrograph rise and fall dynamics with stream stage data[J]. Journal of the American Water Resources Association, 2008, 44(6): 1431-1440. |
[70] |
Karlsen R H, Bishop K, Grabs T, et al. The role of landscape properties, storage and evapotranspiration on variability in streamflow recessions in a boreal catchment[J]. Journal of Hydrology, 2019, 570: 315-328.
doi: 10.1016/j.jhydrol.2018.12.065 |
[71] | Cheng Y S, Sang Y F, Wang Z G, et al. Effects of rainfall and underlying surface on flood recession: The upper Huaihe River Basin case[J]. International Journal of Disaster Risk Science, 2021, 12: 111-120. |
[72] |
张俊兰, 罗继, 王荣梅. 近20 a新疆升温融雪(冰)型洪水频次时空变化及大气环流型分析[J]. 干旱区研究, 2021, 38(2): 339-350.
doi: 10.13866/j.azr.2021.02.05 |
[Zhang Junlan, Luo Ji, Wang Rongmei. Combined analysis of the spatiotemporal variations in snowmelt (ice) flood frequency in Xinjiang over 20 years and atmospheric circulation patterns[J]. Arid Zone Research, 2021, 38(2): 339-350.]
doi: 10.13866/j.azr.2021.02.05 |
|
[73] |
胡可可, 何建村, 赵健, 等. 气候变化背景下尼雅河流域生态基流研究[J]. 干旱区地理, 2022, 45(5): 1472-1480.
doi: 10.12118/j.issn.1000-6060.2021.476 |
[Hu Keke, He Jiancun, Zhao Jian, et al. Ecological base flow in Niya River Basin under climate change[J]. Arid Land Geography, 2022, 45(5): 1472-1480.]
doi: 10.12118/j.issn.1000-6060.2021.476 |
|
[74] |
刘宇, 管子隆, 田济扬, 等. 近70 a泾河流域径流变化及其驱动因素研究[J]. 干旱区地理, 2022, 45(1): 17-26.
doi: 10.12118/j.issn.1000–6060.2021.212 |
[Liu Yu, Guan Zilong, Tian Jiyang, et al. Runoff change and its driving factors in Jinghe River Basin in recent 70 years[J]. Arid Land Geography, 2022, 45(1): 17-26.]
doi: 10.12118/j.issn.1000–6060.2021.212 |
[1] | 康立民, 滕心如, 车佳航, 怀保娟. 昆仑山北坡区域积雪时空变化特征[J]. 干旱区地理, 2024, 47(9): 1462-1471. |
[2] | 李红阳, 陈天宇, 王圣杰, 张明军. 1979—2021年新疆昆仑山北坡潜在蒸散时空变化研究[J]. 干旱区地理, 2024, 47(9): 1443-1450. |
[3] | 张璐, 孙美平, 闫欣, 王伟生, 范蕊谊. 基于多源数据的昆仑山北坡地表太阳辐射调查评估[J]. 干旱区地理, 2024, 47(8): 1304-1313. |
[4] | 夏婷婷, 薛璇, 王灏伟, 徐文哲, 盛紫怡, 汪洋. 昆仑山北坡陆地水储量变化及其驱动因素分析[J]. 干旱区地理, 2024, 47(8): 1292-1303. |
[5] | 石玉东, 王圣杰, 张明军, 朱成刚, 车彦军. 昆仑山北坡地表水氢氧稳定同位素空间分布特征[J]. 干旱区地理, 2024, 47(7): 1127-1135. |
[6] | 周洪华, 杨玉海, 朱成刚, 方功焕. 供需平衡视角下昆仑山北坡县域单元地表水资源开发利用潜力初探[J]. 干旱区地理, 2024, 47(7): 1106-1115. |
[7] | 朱成刚, 陈亚宁, 张明军, 车彦军, 孙美平, 赵锐锋, 汪洋, 刘玉婷. 昆仑山北坡水资源科学考察初报[J]. 干旱区地理, 2024, 47(7): 1097-1105. |
[8] | 陈亚宁, 朱成刚, 李稚, 方功焕. 昆仑山北坡区域高质量发展面临的问题、机遇与挑战[J]. 干旱区地理, 2024, 47(5): 733-740. |
[9] | 刘玉婷, 陈亚宁, 朱成刚, 张淑花, 黄心垚. 2003—2022年昆仑山北坡典型湖泊水位变化及其归因[J]. 干旱区地理, 2024, 47(11): 1805-1815. |
[10] | 李晓萌, 杨莲梅, 李建刚, 刘晶. 昆仑山北坡“6·14”极端暴雨过程的中尺度对流系统特征分析[J]. 干旱区地理, 2024, 47(10): 1700-1712. |
[11] | 陈满, 陈亚宁, 方功焕, 李玉朋, 孙慧兰. 昆仑山北坡冰川湖变化及其溃决风险评估[J]. 干旱区地理, 2024, 47(10): 1628-1639. |
[12] | 李海娟,刘时银,吴坤鹏. 喀喇昆仑山乔戈里峰北坡主要冰川运动特征[J]. 干旱区地理, 2021, 44(5): 1350-1364. |
|