收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2023, Vol. 46 ›› Issue (12): 2074-2085.doi: 10.12118/j.issn.1000-6060.2023.193

• 区域发展 • 上一篇    下一篇

黄河流域旅游业碳排放效率综合测度及影响因素研究

杜娅明(),白永平(),梁建设,张春悦,荆林祥,王立果,邹嘉铖   

  1. 西北师范大学地理与环境科学学院,甘肃 兰州 730070
  • 收稿日期:2023-04-28 修回日期:2023-06-23 出版日期:2023-12-25 发布日期:2024-01-05
  • 通讯作者: 白永平(1961-),男,博士,教授,主要从事区域发展与区域管理方面的研究. E-mail: baiyp@nwnu.edu.cn
  • 作者简介:杜娅明(1999-),女,硕士研究生,主要从事区域发展与区域管理方面的研究. E-mail: duym396396@163.com
  • 基金资助:
    国家自然科学基金(40771054);高等学校博士学科点专项科研基金联合资助课(20106203110002);甘肃省重点研发计划项目(18YF1FA052)

Comprehensive measurement and influencing factors of carbon emission efficiency of tourism in the Yellow River Basin

DU Yaming(),BAI Yongping(),LIANG Jianshe,ZHANG Chunyue,JING Linxiang,WANG Liguo,ZOU Jiacheng   

  1. College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2023-04-28 Revised:2023-06-23 Online:2023-12-25 Published:2024-01-05

摘要:

科学量化并分析黄河流域旅游业碳排放效率及其影响因素,对于推动其旅游经济绿色化发展具有重要意义。基于2000—2019年黄河流域9省区面板数据,利用Super-SBM模型从静态和动态2个视角揭示旅游业碳排放效率的时空演变特征,并通过空间杜宾模型探讨影响黄河流域旅游业碳排放效率的关键因素及其空间溢出效应。结果表明:(1) 2000—2019年,黄河流域内旅游业碳排放效率均值呈现先波动上升后下降的趋势,各省区之间的差异不断缩小,空间分布呈现“西低东高”格局。(2) 动态效率方面,Malmquist-Luenberger指数和核密度曲线的变化趋势均表明旅游业碳排放效率的极化现象减弱,且技术进步对旅游业碳排放效率变动的贡献更大。(3) 影响因素方面,环境规制和城镇化水平在促进当地旅游业碳排放效率的过程中呈现出正向溢出效应;产业结构、对外开放、技术水平和旅游产业集聚对当地和邻地的影响系数均为负;而经济发展水平会抑制旅游业碳排放效率的提升,但对周边地区呈现出显著的正向溢出作用。

关键词: 旅游业碳排放效率, Super-SBM, 空间杜宾模型, 黄河流域

Abstract:

The quantification and assessment of carbon emission efficiency and its influencing factors in the tourism sector are crucial for advancing environmentally-friendly development in the tourism economy of Yellow River Basin, China. This study develops an input-output table for evaluating the carbon emission efficiency of tourism. In addition to traditional factors such as capital, labor, and energy, we incorporate technological innovation. The desired output is the total tourism revenue, while the non-desired output is the carbon emission during tourism, integrated into the Super-Slack-Based Measure (SBM). Employing the Malmquist-Luenberger index and the kernel density estimation method, we analyzed tourism carbon emission efficiency from both static and dynamic perspectives. Furthermore, we established a spatial Durbin model to examine spatial spillover effects. Our results revealed the following: (1) During 2000—2019, the carbon emission efficiency of tourism in the Yellow River Basin initially experienced an upward fluctuation followed by a subsequent downward trend. Provinces and regions exhibited a diminishing difference, with a spatial distribution pattern that indicated lower efficiency in the west and higher efficiency in the east. (2) Regarding dynamic efficiency, both the Malmquist-Luenberger index and kernel density estimation trends indicated a weakening polarization phenomenon in carbon emission efficiency. Technological progress significantly contributed to changes in the tourism industry’s carbon emission efficiency. (3) Influencing factors that include positive spillover effects from environmental regulation and urbanization, enhanced local tourism carbon emission efficiency. Conversely, industrial structure, openness, technology level, and tourism industry agglomeration were found to have adverse effects. Economic development levels hindered the improvement of carbon emission efficiency in tourism; however, they exhibited a notable positive spillover effect on surrounding regions. These findings aim to establish a theoretical foundation for governments to formulate targeted policies for energy-saving and carbon-emission reduction in the tourism sector.

Key words: tourism carbon emission efficiency, Super-SBM, spatial Durbin model, Yellow River Basin