收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2024, Vol. 47 ›› Issue (4): 707-719.doi: 10.12118/j.issn.1000-6060.2023.088

• 区域发展 • 上一篇    下一篇

黄河流域五大城市群PM2.5时空演变与影响因素探讨

慕石雷1(), 杨玉欢2, 乌日陶克套胡1()   

  1. 1.内蒙古师范大学民族学人类学学院,内蒙古 呼和浩特 010022
    2.西北大学城市与环境学院,陕西 西安 710127
  • 收稿日期:2023-02-28 修回日期:2023-04-23 出版日期:2024-04-25 发布日期:2024-05-17
  • 通讯作者: 乌日陶克套胡(1963-),男,教授,博士生导师,主要从事民族地区经济与社会发展研究. E-mail: wurtkth@imnu.edu.cn
  • 作者简介:慕石雷(1983-),男,博士研究生,主要从事民族经济、资源环境经济研究. E-mail: mushilei123@163.com
  • 基金资助:
    国家社会科学基金项目(20XMZ060);内蒙古自治区2023年研究生科研创新项目(B20231052Z);内蒙古师范大学基本科研业务费专项资金资助(2022JBXC010)

Spatiotemporal evolution and influencing factors of PM2.5 in the five urban agglomerations in the Yellow River Basin

MU Shilei1(), YANG Yuhuan2, Wuritaoketaohu 1()   

  1. 1. College of Ethnology and Anthropology, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China
    2. College of Urban and Environmental Sciences, Northwestern University, Xi’an 710127, Shaanxi, China
  • Received:2023-02-28 Revised:2023-04-23 Published:2024-04-25 Online:2024-05-17

摘要:

以黄河流域5大城市群82个城市为研究区域,选取2016—2020年中国环境监测总站发布的环境空气颗粒物(PM2.5)数据,采用空间自相关、地理探测器和地理加权回归等方法,研究PM2.5的时空分布特征和空间异质性的主要驱动影响因素。结果表明:(1) PM2.5年均值的变化大体呈倒“N”型,季均值变化呈先降后升的周期规律性的“U”型。(2) 在空间分布上,形成了黄河下游>中游>上游的梯度递减空间差异格局,并有逐渐下降的趋势。(3) PM2.5演变整体上呈正自相关集聚分布,集聚类型主要为高-高集聚、低-低集聚和低-高集聚类型。(4) 2016年和2020年PM2.5空间分异的自然地理因素比社会经济因素的驱动力更强,交互作用结果为双因子增强或非线性增强2种类型。(5) 通过地理加权回归模型对分异探测解释力变化最大的5个因子进行拟合,5 a间各因子对5大城市群PM2.5污染的负效应不断提高,正效应呈下降趋势,空间作用方向及强度上差异显著。研究结果为黄河流域5大城市群大气污染防治和环境规制完善提供参考依据,助推黄河流域生态保护和高质量发展。

关键词: 黄河流域, PM2.5, 城市群, 生态保护, 高质量发展

Abstract:

This study focuses on 82 cities in five major urban agglomerations in the Yellow River Basin and uses PM2.5 data published by the China National Environmental Monitoring Centre from 2016 to 2020. Spatial autocorrelation, geographic detectors, and geographically weighted regression methods were employed to investigate the spatiotemporal distribution characteristics and main driving factors of spatial heterogeneity of PM2.5. This provides a reference for relevant departments to improve atmospheric pollution prevention and control policies. The results are as follows: (1) The change in the annual mean of PM2.5 roughly follows an inverted “N” shape, and the seasonal mean changes in a “U” shape with a periodicity of first decreasing and then increasing. (2) In terms of spatial distribution, a gradient-decreasing pattern is formed from downstream to midstream to upstream of the Yellow River, exhibiting a gradually decreasing trend. (3) PM2.5 exhibits positive spatial autocorrelation and overall aggregation distribution over the five years, with high-high, low-low, and low-high agglomeration types. (4) Natural geographical factors have a stronger driving force on PM2.5 spatial differentiation than socio-economic factors in 2016 and 2020. The interaction results show two types: bi-factor and nonlinear strengthening. (5) The geographically weighted regression model is used to fit the five factors with the largest explanatory power for differentiation. The negative effects of each factor on PM2.5 pollution in the five urban agglomerations have increased, whereas the positive effects have decreased over the past 5 years. Significant differences in spatial direction and strength were observed.

Key words: the Yellow River Basin, PM2.5, urban agglomeration, ecological protection, high-quality development