干旱区地理 ›› 2025, Vol. 48 ›› Issue (3): 391-404.doi: 10.12118/j.issn.1000-6060.2024.181 cstr: 32274.14.ALG2024181
柴明辰1(), 徐国杰1(
), 甄钟秀2, 银燕1, 郑博华3,4, 陈魁5, 李斌3,4, 李圆圆3,4
收稿日期:
2024-03-19
修回日期:
2024-05-08
出版日期:
2025-03-25
发布日期:
2025-03-14
通讯作者:
徐国杰(1985-),男,博士,副教授,主要从事大气化学、气溶胶物理及化学研究. E-mail: guojiexu@nuist.edu.cn作者简介:
柴明辰(2002-),男,硕士研究生,主要从事大气环境研究. E-mail: chaimingchen@nuist.edu.cn
基金资助:
CHAI Mingchen1(), XU Guojie1(
), ZHEN Zhongxiu2, YIN Yan1, ZHENG Bohua3,4, CHEN Kui5, LI Bin3,4, LI Yuanyuan3,4
Received:
2024-03-19
Revised:
2024-05-08
Published:
2025-03-25
Online:
2025-03-14
摘要:
为了了解中天山PM2.5的污染特征,于2019年7—9月在中天山乌拉斯台地区采集了PM2.5样品,分别使用电感耦合等离子体质谱仪(ICP-MS)和气质联用仪(GC-MS)分析了PM2.5中重金属和多环芳烃(PAHs)含量,并对PM2.5中重金属和PAHs来源和健康效应进行了研究。结果表明:(1) 中天山夏秋季PM2.5中重金属和PAHs浓度总体偏低;重金属总平均浓度为238.50 ng·m-3,各元素平均浓度水平为Fe>Cu>Zn>Pb>Mn>Cr>As>V>Rb>Ni>Co>Se>Cd>Tl,除Fe(139.90 ng·m-3)和Cu(78.72 ng·m-3)外其余元素平均浓度均在10 ng·m-3以下;PAHs总平均浓度为1.37 ng·m-3,3环、4环和5~7环的浓度占比分别为3.59%、32.34%和64.07%。(2) 观测期间PM2.5主要受到来自西部的长距离输送和来自北部与西部的短距离输送影响,还可能受山谷风和边界层变化的影响。(3) 正矩阵因子分析(PMF)得到污染源为天然气燃烧与石油源(28.56%)、机动车排放和燃煤(28.46%)、生物质燃烧和工业污染(16.14%)、有色金属冶炼(14.32%)和扬尘(12.52%)。(4) 经呼吸道途径直接吸入PM2.5中重金属和PAHs对成人和儿童存在一定的致癌风险,非致癌健康风险较低;存在致癌风险的单体是Cr、Co、As、Se元素,其余物质健康风险较低。
柴明辰, 徐国杰, 甄钟秀, 银燕, 郑博华, 陈魁, 李斌, 李圆圆. 中天山PM2.5中重金属和多环芳烃污染特征、来源及健康风险评价[J]. 干旱区地理, 2025, 48(3): 391-404.
CHAI Mingchen, XU Guojie, ZHEN Zhongxiu, YIN Yan, ZHENG Bohua, CHEN Kui, LI Bin, LI Yuanyuan. Characteristics, sources and health risk assessment of PM2.5-bound heavy metals and polycyclic aromatic hydrocarbons pollution in middle Tianshan Mountains[J]. Arid Land Geography, 2025, 48(3): 391-404.
表4
中天山PM2.5中重金属浓度水平"
元素 | 最小值/ng·m-3 | 最大值/ng·m-3 | 均值/ng·m-3 | 变异系数 |
---|---|---|---|---|
钒(V) | n.d. | 15.82 | 0.42 | 4.81 |
铬(Cr) | n.d. | 86.69 | 1.78 | 6.20 |
锰(Mn) | n.d. | 20.43 | 4.53 | 0.84 |
铁(Fe) | 9.61 | 1776.13 | 139.90 | 1.75 |
钴(Co) | n.d. | 3.69 | 0.22 | 2.58 |
镍(Ni) | n.d. | 2.06 | 0.27 | 1.89 |
铜(Cu) | 2.07 | 496.63 | 78.72 | 1.20 |
锌(Zn) | n.d. | 91.25 | 6.43 | 2.02 |
砷(As) | 0.06 | 2.65 | 0.79 | 0.80 |
硒(Se) | n.d. | 0.67 | 0.13 | 1.27 |
铷(Rb) | n.d. | 1.93 | 0.32 | 1.32 |
镉(Cd) | 0.02 | 0.86 | 0.10 | 1.12 |
铊(Tl) | 0.01 | 0.21 | 0.07 | 0.60 |
铅(Pb) | 0.52 | 14.35 | 4.82 | 0.52 |
表5
中国PM2.5中重金属平均浓度对比"
采样地点 | 采样时间(年-月) | Cr | Mn | Fe | Ni | Cu | Zn | As | Cd | Pb | 来源 |
---|---|---|---|---|---|---|---|---|---|---|---|
贡嘎山 | 2015-05—2016-05 | 22.74 | 9.06 | 379.79 | 97.75 | 7.23 | 441.65 | 1.22 | 0.29 | 44.39 | [ |
南京市 | 2016-12—2017-10 | 32.1 | 38.0 | 690.5 | 42.4 | 28.0 | 220.5 | 6.2 | 1.6 | 38.4 | [ |
济南市 | 2017-03 | 0.1 | 18.0 | - | 5.5 | 225.0 | 71.8 | 4.0 | 0.6 | 35.3 | [ |
乌鲁木齐市 | 2018-03—2018-04 | 112 | 72 | - | 26 | 184 | 263 | - | 26 | 47 | [ |
克拉玛依市 | 2018-03—2018-04 | 91 | 45 | - | 21 | 69 | 61 | - | 15 | 42 | [ |
西安市 | 2019-01—2019-12 | 14 | 355 | 686 | - | 74 | 18 | 21 | 224 | 144 | [ |
乌鲁木齐市 | 2019-10、2019-12 | - | 71.09 | 2086.19 | 19.74 | 175.69 | 330.92 | 180.93 | - | 53.80 | [ |
中天山 | 2019-07—2019-09 | 1.78 | 4.53 | 139.90 | 0.27 | 78.72 | 6.43 | 0.79 | 0.10 | 4.82 | 本研究 |
表6
中天山PM2.5中PAHs浓度水平"
PAHs | 最小值 /ng·m-3 | 最大值 /ng·m-3 | 均值 /ng·m-3 | 变异 系数 | 环数 |
---|---|---|---|---|---|
茐(Flu) | n.d. | 0.03 | 0.003 | 1.57 | 3 |
菲(Phe) | 0.003 | 0.19 | 0.03 | 0.99 | 3 |
蒽(Ant) | n.d. | 0.03 | 0.01 | 0.50 | 3 |
荧蒽(Flua) | 0.01 | 0.78 | 0.14 | 0.95 | 4 |
芘(Pyr) | 0.01 | 0.56 | 0.12 | 0.90 | 4 |
苯并[a]蒽(BaA) | 0.004 | 0.30 | 0.05 | 0.96 | 4 |
䓛(Chr) | 0.02 | 0.47 | 0.13 | 0.69 | 4 |
苯并[b]荧蒽(BbF) | 0.04 | 0.87 | 0.23 | 0.62 | 5 |
苯并[k]荧蒽(BkF) | 0.02 | 0.54 | 0.12 | 0.70 | 5 |
苯并[e]芘(BeP) | 0.02 | 0.35 | 0.10 | 0.63 | 5 |
苯并[a]芘(BaP) | n.d. | 0.47 | 0.10 | 0.89 | 5 |
二苯并[a,h]蒽(DahA) | n.d. | 0.11 | 0.02 | 0.81 | 5 |
茚并[1,2,3-cd]芘(IcdP) | 0.03 | 0.78 | 0.16 | 0.84 | 6 |
苯并[ghi]芘(BghiP) | 0.02 | 0.48 | 0.10 | 0.83 | 6 |
晕苯(Cor) | n.d. | 0.27 | 0.05 | 0.92 | 7 |
表7
中国PM2.5中PAHs平均浓度对比"
采样地点 | 采样时间(年-月) | 2~3环PAHs | 4环PAHs | 5~7环PAHs | 总浓度 /ng·m-3 | 来源 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
浓度/ng·m-3 | 占比/% | 浓度/ng·m-3 | 占比/% | 浓度/ng·m-3 | 占比/% | ||||||
西安市 | 2016-01—2018-12 | 0.44 | 3.77 | 3.98 | 34.08 | 6.85 | 58.65 | 11.27 | [ | ||
银川市 | 2016-07 | 19.08 | 42.62 | 11.81 | 26.38 | 13.88 | 31.00 | 44.77 | [ | ||
乌鲁木齐市 | 2018-03—2018-04 | 5.75 | 21.39 | 13.83 | 51.45 | 7.30 | 27.16 | 26.88 | [ | ||
克拉玛依市 | 2018-03—2018-04 | 4.62 | 17.30 | 20.41 | 76.41 | 1.68 | 6.29 | 26.71 | [ | ||
吉木乃县 | 2018-03—2018-04 | 6.70 | 15.47 | 31.36 | 72.39 | 5.26 | 12.14 | 43.32 | [ | ||
伊宁市 | 2016-06—2016-08 | 2.95 | 17.69 | 3.59 | 21.52 | 10.14 | 60.79 | 16.68 | [ | ||
瓦里关站 | 2019-12—2020-01 | 0.41 | 4.81 | 4.60 | 53.93 | 3.52 | 41.27 | 8.53 | [ | ||
金沙站 | 2019-12—2020-01 | 0.22 | 7.83 | 1.14 | 40.57 | 1.45 | 51.60 | 2.81 | [ | ||
中天山 | 2019-07—2019-09 | 0.05 | 3.59 | 0.44 | 32.34 | 0.83 | 64.07 | 1.37 | 本研究 |
表8
重金属元素与PAHs的危害商(HQ)与致癌超额危险度(ECR)"
污染物 | HQ | ECR | |||
---|---|---|---|---|---|
成年人 | 儿童 | 成年人 | 儿童 | ||
V | 6.90×10-3 | 5.18×10-3 | - | - | |
Cr | 4.18×10-8 | 3.14×10-3 | 1.20×10-5 | 2.26×10-6 | |
Mn | 0.149 | 0.112 | - | - | |
Co | 6.03×10-2 | 4.52×10-2 | 1.12×10-6 | 2.09×10-7 | |
Ni | 4.93×10-3 | 3.70×10-3 | 3.96×10-8 | 7.42×10-9 | |
As | 8.66×10-2 | 6.49×10-2 | 1.91×10-6 | 3.59×10-7 | |
Se | - | - | 1.47×10-6 | 2.75×10-7 | |
Cd | 1.64×10-2 | 1.23×10-2 | 1.01×10-7 | 1.90×10-8 | |
Pb | - | - | 2.17×10-7 | 4.07×10-8 | |
总重金属 | 0.328 | 0.246 | 1.69×10-5 | 3.17×10-6 | |
Flu | 2.47×10-6 | 1.85×10-6 | 1.01×10-12 | 1.90×10-13 | |
Phe | 2.47×10-5 | 1.85×10-5 | 1.01×10-11 | 1.90×10-12 | |
Ant | 8.22×10-5 | 6.16×10-5 | 3.38×10-11 | 6.34×10-12 | |
Flua | 1.15×10-4 | 8.63×10-5 | 4.73×10-11 | 8.88×10-12 | |
Pyr | 9.86×10-5 | 7.40×10-5 | 4.06×10-11 | 7.61×10-12 | |
BaA | 4.11×10-3 | 3.08×10-3 | 1.69×10-9 | 3.17×10-10 | |
Chr | 1.07×10-3 | 8.01×10-4 | 4.40×10-10 | 8.24×10-11 | |
BbF | 1.89×10-2 | 1.42×10-2 | 7.78×10-9 | 1.46×10-9 | |
BkF | 9.86×10-3 | 7.40×10-3 | 4.06×10-9 | 7.61×10-10 | |
BeP | 8.22×10-4 | 6.16×10-4 | 3.38×10-10 | 6.34×10-11 | |
BaP | 8.22×10-2 | 6.16×10-2 | 3.38×10-8 | 6.34×10-9 | |
IcdP | 1.32×10-2 | 9.86×10-3 | 5.41×10-9 | 1.01×10-9 | |
DahA | 1.64×10-2 | 1.23×10-2 | 6.76×10-9 | 1.27×10-9 | |
BghiP | 8.22×10-4 | 6.16×10-4 | 3.38×10-10 | 6.34×10-11 | |
Cor | 4.11×10-5 | 3.08×10-5 | 1.69×10-11 | 3.17×10-12 | |
总PAHs | 0.148 | 0.111 | 6.08×10-8 | 1.14×10-8 | |
总和 | 0.476 | 0.357 | 1.70×10-5 | 3.18×10-6 |
[1] | 曹军骥. 我国PM2.5污染现状与控制对策[J]. 地球环境学报, 2012, 3(5): 1030-1036. |
[Cao Junji. Pollution status and control strategies of PM2.5 in China[J]. Journal of Earth Environment, 2012, 3(5): 1030-1036. ] | |
[2] | Luan T, Guo X L, Guo L J, et al. Quantifying the relationship between PM2.5 concentration, visibility and planetary boundary layer height for long-lasting haze and fog-haze mixed events in Beijing[J]. Atmospheric Chemistry and Physics, 2018, 18(1): 203-225. |
[3] | Wang J D, Zhao B, Wang S X, et al. Particulate matter pollution over China and the effects of control policies[J]. Science of the Total Environment, 2017, 584-585: 426-447. |
[4] |
焦美玲, 韩晶, 曹彦超, 等. 庆阳市空气污染及气象因子影响特征分析[J]. 干旱区地理, 2024, 47(6): 932-941.
doi: 10.12118/j.issn.1000-6060.2023.302 |
[Jiao Meiling, Han Jing, Cao Yanchao, et al. Characteristics of air pollution and meteorological factors in Qingyang City[J]. Arid Land Geography, 2024, 47(6): 932-941. ]
doi: 10.12118/j.issn.1000-6060.2023.302 |
|
[5] | 杨婧, 郭晓爽, 滕曼, 等. 我国大气细颗粒物中金属污染特征及来源解析研究进展[J]. 环境化学, 2014, 33(9): 1514-1521. |
[Yang Jing, Guo Xiaoshuang, Teng Man, et al. A review of atmospheric fine particulate matter associated trace metal pollutants in China[J]. Environmental Chemistry, 2014, 33(9): 1514-1521. ] | |
[6] | Singh D K, Gupta T. Source apportionment and risk assessment of PM1 bound trace metals collected during foggy and non-foggy episodes at a representative site in the Indo-Gangetic Plain[J]. Science of the Total Environment, 2016, 550: 80-94. |
[7] | 张晓茹, 孔少飞, 银燕, 等. 亚青会期间南京大气PM2.5中重金属来源及风险[J]. 中国环境科学, 2016, 36(1): 1-11. |
[Zhang Xiaoru, Kong Shaofei, Yin Yan, et al. Sources and risk assessment of heavy metals in ambient PM2.5 during Youth Asian Game period in Nanjing[J]. China Environmental Science, 2016, 36(1): 1-11. ] | |
[8] | Pateraki S, Asimakopoulos D N, Maggos T, et al. Chemical characterization, sources and potential health risk of PM2.5 and PM1 pollution across the Greater Athens Area[J]. Chemosphere, 2020, 241: 125026, doi: 10.1016/j.chemosphere.2019.125026. |
[9] | 黄菊. 西北典型城市大气颗粒物组分污染特征及其健康风险评估[D]. 兰州: 兰州大学, 2021. |
[Huang Ju. Pollution characteristics and health risk assessment of atmospheric particulate matter in northwest China[D]. Lanzhou: Lanzhou University, 2021. ] | |
[10] | 姚馨, 赵义, 安琪, 等. 哈尔滨冬季积雪中多环芳烃同大气污染物的关系及其潜在源区分析[J]. 环境科学学报, 2023, 43(5): 341-352. |
[Yao Xin, Zhao Yi, An Qi, et al. Relationships between polycyclic aromatic hydrocarbons in snow cover and atmospheric pollutants and their potential source areas in Harbin[J]. Acta Scientiae Circumstantiae, 2023, 43(5): 341-352. ] | |
[11] | 洪纲, 周静博, 姜建彪, 等. 空气细颗粒物(PM2.5)的污染特征及其来源解析研究进展[J]. 河北工业科技, 2015, 32(1): 64-71. |
[Hong Gang, Zhou Jingbo, Jiang Jianbiao, et al. Research progress of characteristics and source apportionment of air fine particle pollution (PM2.5)[J]. Hebei Journal of Industrial Science and Technology, 2015, 32(1): 64-71. ] | |
[12] | 苏都尔·克热木拉, 伊丽米热·阿布达力木, 迪丽努尔·塔力甫. 乌鲁木齐市采暖期大气PM2.5-10、PM2.5中重金属和多环芳烃的分布及其相关性[J]. 环境化学, 2013, 32(4): 706-707. |
[Keremula Suduer, Abudalimu Yilimire, Talifu Dilinuer. Distribution and correlation of heavy metals, and polycyclic aromatic hydrocarbons in atmospheric PM2.5-10 and PM2.5 during the heating period in Urumqi[J]. Environmental Chemistry, 2013, 32(4): 706-707. ] | |
[13] | 李琦路, 吴锦涛, 张颖, 等. 新乡市机动车排放对道路灰尘中重金属与多环芳烃污染的影响[J]. 环境科学, 2019, 40(12): 5258-5264. |
[Li Qilu, Wu Jintao, Zhang Ying, et al. Effects of vehicle emissions on heavy metals and polycyclic aromatic hydrocarbons pollution in road dust in Xinjiang[J]. Environmental Science, 2019, 40(12): 5258-5264. ] | |
[14] | Cui H T, Lu Y L, Zhou Y Q, et al. Spatial variation and driving mechanism of polycyclic aromatic hydrocarbons (PAHs) emissions from vehicles in China[J]. Journal of Cleaner Production, 2022, 336: 130210, doi: 10.1016/j.jclepro.2021.130210. |
[15] |
李春华, 朱飙, 杨金虎, 等. 中国区域气候干湿与土壤湿度变化特征及其差异性分析[J]. 干旱区地理, 2024, 47(10): 1674-1687.
doi: 10.12118/j.issn.1000-6060.2023.662 |
[Li Chunhua, Zhu Biao, Yang Jinhu, et al. Difference of changing characteristics analysis between climate dry-wet and soil moisture in China[J]. Arid Land Geography, 2024, 47(10): 1674-1687. ]
doi: 10.12118/j.issn.1000-6060.2023.662 |
|
[16] | 谢运兴, 唐晓, 郭宇宏, 等. 新疆大气颗粒物的时空分布特征[J]. 中国环境监测, 2019, 35(1): 6-36. |
[Xie Yunxing, Tang Xiao, Guo Yuhong, et al. Spatial and temporal distribution of atmospheric particulate matter in Xinjiang[J]. Environmental Monitoring in China, 2019, 35(1): 6-36. ] | |
[17] | 魏明娜, 谢海燕, 邓文叶, 等. 乌鲁木齐市采暖期与非采暖期大气PM2.5和PM10中水溶性离子特征分析[J]. 安全与环境学报, 2017, 17(5): 1986-1991. |
[Wei Mingna, Xie Haiyan, Deng Wenye, et al. Water-soluble ions pollution characteristics of the atmospheric particles (PM2.5 and PM10) in Urumqi during the heating and non-heating periods[J]. Journal of Safety and Environment, 2017, 17(5): 1986-1991. ] | |
[18] | 石小翠, 帕丽达·牙合甫, 宋思醒. 乌鲁木齐市PM2.5中水溶性离子特征及来源分析[J]. 环境工程技术学报, 2021, 11(6): 1049-1056. |
[Shi Xiaocui, Yahefu Palida, Song Sixing. Characteristics and source analysis of water-soluble ions in PM2.5 in Urumqi City[J]. Journal of Environmental Engineering Technology, 2021, 11(6): 1049-1056. ] | |
[19] | 石小翠, 帕丽达·牙合甫, 宋思醒, 等. 乌鲁木齐市大气PM2.5中元素特征及风险评价[J]. 环境科学与技术, 2021, 44(5): 171-178. |
[Shi Xiaocui, Yahefu Palida, Song Sixing, et al. Element characteristics and risk assessment of atmospheric PM2.5 in Urumqi[J]. Environmental Science & Technology, 2021, 44(5): 171-178. ] | |
[20] | 王雨晴, 王胜利, 谷超, 等. 伊犁河谷夏季PM2.5中金属元素以源为导向的健康风险评价[J]. 环境化学, 2023, 42(12): 4161-4170. |
[Wang Yuqing, Wang Shengli, Gu Chao, et al. Source-oriented health risk assessment of PM2.5 bound metal elements during summer in Ili Valley[J]. Environmental Chemistry, 2023, 42(12): 4161-4170. ] | |
[21] | Wang W, Ding X, Turap Y S, et al. Distribution, sources, risks, and vitro DNA oxidative damage of PM2.5-bound atmospheric polycyclic aromatic hydrocarbons in Urumqi, NW China[J]. Science of the Total Environment, 2020, 39: 139518, doi: 10.1016/j.scitotenv.2020.139518. |
[22] | 胡锋, 王兴磊, 刘云庆, 等. 伊宁市夏季大气PM2.5中多环芳烃污染特征及健康风险评价[J]. 环境与健康杂志, 2017, 34(6): 533-535. |
[Hu Feng, Wang Xinglei, Liu Yunqing, et al. Characteristics and health risk assessment of polycyclic aromatic hydrocarbons pollution in PM2.5 of Yining City in summer[J]. Journal of Environment and Health, 2017, 34(6): 533-535. ] | |
[23] | 万瑜, 曹兴, 崔玉玲, 等. 中天山北坡山区近30 a气候变化特征[J]. 干旱气象, 2012, 30(4): 575-582. |
[Wan Yu, Cao Xing, Cui Yuling, et al. Analysis of climate change tendency in northern piedmont of middle Tianshan Mountain over recent 30 years[J]. Journal of Arid Meteorology, 2012, 30(4): 575-582. ] | |
[24] | Zhang H H, Li R, Huang C P, et al. Seasonal variation of aerosol iron solubility in coarse and fine particles at an inland city in northwestern China[J]. Atmospheric Chemistry and Physics, 2023, 23: 3543-3559. |
[25] |
Santos A G, Regis A C D, Rocha G O, et al. A simple, comprehensive, and miniaturized solvent extraction method for determination of particulate-phase polycyclic aromatic compounds in air[J]. Journal of Chromatography A, 2016, 1435: 6-17.
doi: 10.1016/j.chroma.2016.01.018 pmid: 26830633 |
[26] | Cui L K, Song X Q, Zhong G Q. Comparative analysis of three methods for HYSPLIT atmospheric trajectories clustering[J]. Atmosphere, 2021, 12(6): 698, doi: 10.3390/atmos12060698. |
[27] | 杨红, 谢海燕, 鲍昱璇, 等. 阿克苏市春季PM10和PM2.5输送路径及潜在源分析[J]. 四川环境, 2022, 41(3): 71-78. |
[Yang Hong, Xie Haiyan, Bao Yuxuan, et al. Analysis of transmission paths and potential sources of PM10 and PM2.5 in Aksu in spring[J]. Sichuan Environment, 2022, 41(3): 71-78. ] | |
[28] | 张秀芝, 鲍征宇, 唐俊红. 富集因子在环境地球化学重金属污染评价中的应用[J]. 地质科技情报, 2006, 25(1): 65-72. |
[Zhang Xiuzhi, Bao Zhengyu, Tang Junhong. Application of the enrichment factor in evaluating of heavy metals contamination in the environmental geochemistry[J]. Geological Science and Technology Information, 2006, 25(1): 65-72. ] | |
[29] | 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990: 330-482. |
[China National Environmental Monitoring Centre. Background values of soil elements in China[M]. Beijing: China Environmental Science Press, 1990: 330-482. ] | |
[30] | 赵禹, 赵寒森, 刘拓, 等. 西北地区土地质量地球化学调查进展与主要成果[J]. 西北地质, 2022, 55(3): 140-154. |
[Zhao Yu, Zhao Hansen, Liu Tuo, et al. Progresses and main achievements of geochemical survey of land quality in northwest China[J]. Northwestern Geology, 2022, 55(3): 140-154. ] | |
[31] | Yunker M B, Macdonald R W, Vingarzan R, et al. PAHs in the Fraser River Basin: A critical appraisal of PAH ratios as indicators of PAH source and composition[J]. Organic Geochemistry, 2002, 33(4): 489-515. |
[32] | Pio C A, Alves C A, Duarte A C. Identification, abundance and origin of atmospheric organic particulate matter in a Portuguese rural area[J]. Atmospheric Environment, 2001, 35(8): 1365-1375. |
[33] | Paatero P, Tapper U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values[J]. Environmetrics, 1994, 5(2): 111-126. |
[34] | Xu A, Mao Y, Su Y W, et al. Characterization, sources and risk assessment of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Huanggang City, central China[J]. Atmospheric Environment, 2021, 252: 118296, doi: 10.1016/j.atmosenv.2021.118296. |
[35] | T/CSES 36-2021. 区域环境污染健康风险评估技术导则[S]. 北京: 中国环境科学学会, 2021. |
[T/CSES 36-2021. Technical guidelines for health risk assessment of regional environmental pollution[S]. Beijing: Chinese Society for Environmental Sciences, 2021. ] | |
[36] | Ma L X, Li B, Liu Y P, et al. Characterization, sources and risk assessment of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in Harbin, a cold city in northern China[J]. Journal of Cleaner Production, 2020, 264: 121673, doi: 10.1016/j.jclepro.2020.121673. |
[37] | United States Environmental Protection Agency. Regional screening levels (RSLs)[EB/OL]. [2024-03-14]. https://www.epa.gov/risk/regional-screening-levels-rsls. |
[38] | Fadel M, Ledoux F, Afif C, et al. Human health risk assessment for PAHs, phthalates, elements, PCDD/Fs, and DL-PCBs in PM2.5 and for NMVOCs in two East-Mediterranean urban sites under industrial influence[J]. Atmospheric Pollution Research, 2022, 13(1): 101261, doi: 10.1016/j.apr.2021.101261. |
[39] | GB 3095-2012. 环境空气质量标准[S]. 北京: 中国环境科学出版社, 2012. |
[GB 3095-2012. Environmental air quality standards[S]. Beijing: China Environmental Science Press, 2012. ] | |
[40] | Meng Y, Li R, Zhao Y L, et al. Chemical characterization and sources of PM2.5 at a high-alpine ecosystem in the southeast Tibetan Plateau, China[J]. Atmospheric Environment, 2020, 235: 117645, doi: 10.1016/j.atmosenv.2020.117645. |
[41] | 李慧明, 钱新, 冷湘梓, 等. 南京市PM2.5中金属元素污染特征及健康风险[J]. 环境监控与预警, 2021, 13(1): 7-13. |
[Li Huiming, Qian Xin, Leng Xiangzi, et al. Pollution characteristics and health risks of metal elements in PM2.5 from Nanjing[J]. Environmental Monitoring and Forewarning, 2021, 13(1): 7-13. ] | |
[42] | 刘婷, 赵长盛, 陈庆锋, 等. 济南市春季大气颗粒物重金属的分布特征[J]. 环境科技, 2020, 33(6): 53-57. |
[Liu Ting, Zhao Changsheng, Chen Qingfeng, et al. Distribution characteristics of heavy metals in air particulates in spring in Jinan[J]. Environmental Science and Technology, 2020, 33(6): 53-57. ] | |
[43] | 朱焱涛. 西安市北郊大气细颗粒物重金属特征及健康风险评价研究[D]. 西安: 西安建筑科技大学, 2022. |
[Zhu Yantao. Heavy metal characteristics and health risk assessment of fine particulate matter in the northern suburb of Xi’an City[D]. Xi’an: Xi’an University of Architecture and Technology, 2022. ] | |
[44] | Wu Y F, Shi Y, Zhang N, et al. Pollution levels, characteristics, and sources of polycyclic aromatic hydrocarbons in atmospheric particulate matter across the Hu line in China: A review[J]. Environmental Chemistry Letters, 2021, 19: 3821-3836. |
[45] | 高洪亮. 黄河三角洲背景点PM2.5中多环芳烃及其衍生物的污染特征和来源解析[D]. 济南: 山东大学, 2021. |
[Gao Hongliang. Source appointment and pollution characteristics of PAHs and their derivatives in PM2.5 at the Yellow River Delta background area[D]. Jinan: Shandong University, 2021. ] | |
[46] | 雷佩玉, 张峰, 郑晶利, 等. 2016—2018年西安市两城区PM2.5中多环芳烃污染特征分析[J]. 卫生研究, 2020, 49(5): 765-774. |
[Lei Peiyu, Zhang Feng, Zheng Jingli, et al. Analysis of polycyclic aromatic hydrocarbons pollution characteristics in PM2.5 in two districts of Xi’an City from 2016 to 2018[J]. Journal of Hygiene Research, 2020, 49(5): 765-774. ] | |
[47] | 胡芸迪, 杜小红, 戚发秋, 等. 西北某工业区周围空气采暖期与非采暖期PM2.5中多环芳烃污染特征、来源分析及人群健康风险评估[J]. 现代预防医学, 2022, 49(2): 227-231, 235. |
[Hu Yundi, Du Xiaohong, Qi Faqiu, et al. Pollution characteristics, source analysis and population health risk assessment of polycyclic aromatic hydrocarbons in PM2.5 during heating and non-heating periods in an industrial area in northwest China[J]. Modern Preventive Medicine, 2022, 49(2): 227-231, 235. ] | |
[48] | 张煜娴, 曹芳, 贾小芳, 等. 中国主要背景区域冬季PM2.5中非极性有机化合物组成及来源解析[J]. 地球与环境, 2022, 50(1): 45-57. |
[Zhang Yuxian, Cao Fang, Jia Xiaofang, et al. Composition and source apportionment of non-polar organic compounds in PM2.5 in winter in major background regions of China[J]. Earth and Environment, 2022, 50(1): 45-57. ] | |
[49] | Zhang J M, Yang L X, Mellouki A, et al. Diurnal concentrations, sources, and cancer risk assessments of PM2.5-bound PAHs, NPAHs, and OPAHs in urban, marine and mountain environments[J]. Chemosphere, 2018, 209: 147-155. |
[50] | 甄钟秀. 华北平原大气多环芳烃的观测和模拟研究[D]. 南京: 南京信息工程大学, 2024. |
[Zhen Zhongxiu. Observation and simulation of atmospheric polycyclic[D]. Nanjing: Nanjing University of Information Science and Technology, 2024. ] | |
[51] | Su T N, Li Z Q, Kahn R. Relationships between the planetary boundary layer height and surface pollutants derived from lidar observations over China: Regional pattern and influencing factors[J]. Atmospheric Chemistry and Physics, 2018, 18(21): 15921-15935. |
[52] | Wu S P, Wang X H, Yan J M, et al. Diurnal variations of particle-bound PAHs at a traffic site in Xiamen, China[J]. Aerosol and Air Quality Research, 2010, 10(5): 497-506. |
[53] |
Keyte I J, Harrison R M, Lammel G. Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons: A review[J]. Chemical Society Reviews, 2013, 42(24): 9333-9391.
doi: 10.1039/c3cs60147a pmid: 24077263 |
[54] | 马迎慧. 南京及周边地区不同环境PM2.5污染特征及来源解析[D]. 南京: 南京信息工程大学, 2017. |
[Ma Yinghui. Pollution characteristics and source apportionment of PM2.5 in Nanjing and its surrounding areas[D]. Nanjing: Nanjing University of Information Science and Technology, 2017. ] | |
[55] | 凌再莉, 宋世杰, 黄韬. 新疆博斯腾湖地区PM10中多环芳烃的污染特征、来源及健康风险评价[J]. 地球与环境, 2024, 52(1): 29-40. |
[Ling Zaili, Song Shijie, Huang Tao. Pollution, sources, and health risk assessment of PM10-bound polycyclic aromatic hydrocarbons in Bosten Lake area, Xinjiang[J]. Earth and Environment, 2024, 52(1): 29-40. ] | |
[56] | 苏都尔·克热木拉. 乌鲁木齐南部PM2.5对质粒DNA的损伤剂量及与PAHs、重金属之间的相关性研究[D]. 乌鲁木齐: 新疆大学, 2014. |
[Kerelula Suduer. Study on the correlation between the toxic dosages of PM2.5 on plasmid DNA and PAHs, heavy metals in southern Urumqi atmospheric[D]. Urumqi: Xinjiang University, 2014. ] |
[1] | 闫劲烨, 马正权, 孙萱萱, 阿力木·阿巴斯, 帕丽达·牙合甫. 2015—2023年“乌-昌-石”城市群PM2.5与PM10时空变化及潜在源分析[J]. 干旱区地理, 2025, 48(3): 405-420. |
[2] | 慕石雷, 杨玉欢, 乌日陶克套胡. 黄河流域五大城市群PM2.5时空演变与影响因素探讨[J]. 干旱区地理, 2024, 47(4): 707-719. |
[3] | 梁樑, 郭晓淞, 陈汉杰, 徐皓帆, 周衍波, 谢邵文, 杨芬, 韦朝阳. 乌鲁木齐市核心城区绿地土壤重金属累积特征及生态风险[J]. 干旱区地理, 2023, 46(11): 1868-1878. |
[4] | 帕丽达·牙合甫, 杨鹏月. 乌鲁木齐市近几年大气颗粒物中重金属的浓度特征[J]. 干旱区地理, 2019, 42(3): 492-498. |
[5] | 王祎頔, 王真祥. 上海市PM2.5浓度变化特征及其气象因子分析[J]. 干旱区地理, 2018, 41(5): 1088-1096. |
[6] | 高宇潇, 刘志辉, 王敬哲. 乌鲁木市PM2.5浓度与MODIS气溶胶光学厚度相关性分析[J]. 干旱区地理, 2018, 41(2): 298-305. |
[7] | 阿不都艾尼·阿不里, 塔西甫拉提·特依拜, 玉米提·哈力克, 师庆东, 尼格拉·塔西甫拉提, 塔依尔江·艾山, 阿尔祖娜·阿布力米提. 露天煤矿周围的四种植被重金属富集和转移特征分析[J]. 干旱区地理, 2017, 40(6): 1207-1217. |
[8] | 尹兆明, 姜莹芳, 张亚刚, 张学敏, 张乐涛, 王彩云, 曹嘉洌, 王瑶, 方静涵, 黄楠楠. 天山乌苏段火山泥元素组成及含量分析[J]. 干旱区地理, 2017, 40(5): 1047-1053. |
[9] | 周伟东, 甄新蓉, 顾松强, 张丽亚. 浦东地区秋末冬初冷空气风雨对PM2.5质量浓度影响研究[J]. 干旱区地理, 2016, 39(5): 1089-1095. |
[10] | 王勇辉, 钟巧, 焦黎. 夏尔希里地区土壤重金属特征及空间变异分析[J]. 干旱区地理, 2016, 39(5): 1043-1050. |
[11] | 孙成胜,蔡小冬,张仁陟,蔡立群. 基于GIS的白银区耕地耕层土壤重金属空间分异及污染评价[J]. 干旱区地理, 2014, 37(4): 750-758. |
[12] | 韩秀凤,卢新卫,庞龙,宁小莉. 包头市街道灰尘重金属空间分布及生态风险[J]. 干旱区地理, 2014, 37(3): 561-569. |
[13] | 李小龙,杨金香,高良敏,姚多喜. 淮南矿区重金属在土壤—女贞根系界面的迁移特征研究[J]. 干旱区地理, 2013, 36(6): 1090-1096. |
[14] | 钱翌,于洪,王灵. 乌鲁木齐市米东区农田土壤重金属含量的空间分布特征[J]. 干旱区地理, 2013, 36(2): 303-310. |
[15] | 齐鹏,张仁陟,张伯尧,王晓娇. 兰州市土壤-蔬菜系统典型重金属空间评价及健康风险分析[J]. 干旱区地理, 2012, 35(01): 162-170. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 14
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 39
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|