Arid Land Geography ›› 2025, Vol. 48 ›› Issue (12): 2210-2219.doi: 10.12118/j.issn.1000-6060.2025.092
• Land Use and Carbon Cycle • Previous Articles Next Articles
GAO Ruixiang1,2(
), LUO Geping1(
), ZHANG Wenqiang1, XIE Mingjuan1, WANG Yuangang1
Received:2025-02-24
Revised:2025-04-01
Online:2025-12-25
Published:2025-12-30
Contact:
LUO Geping
E-mail:gaoruixiang22@mails.ucas.ac.cn;luogp@ms.xjb.ac.cn
GAO Ruixiang, LUO Geping, ZHANG Wenqiang, XIE Mingjuan, WANG Yuangang. Ecosystem carbon flux inversion method combining LSTM and fuzzy mathematics[J].Arid Land Geography, 2025, 48(12): 2210-2219.
Tab. 2
List of the explanatory variables used in this study"
| 解释变量 | 描述 | 单位 | 时间/空间分辨率 | 来源 |
|---|---|---|---|---|
| Tmax | 最高气温 | ℃ | 日 | 通量塔 |
| Tmin | 最低气温 | ℃ | 日 | 通量塔 |
| Tmean | 平均气温 | ℃ | 日 | 通量塔 |
| P | 降水量 | mm | 日 | 通量塔 |
| WS | 风速 | m·s-1 | 日 | 通量塔 |
| VPD | 大气水气压差 | hPa | 日 | 通量塔 |
| LAI | 叶面积指数 | m2 | 8 d/500 m | MODIS |
| DSR | 向下短波辐射 | W·m-2 | d/5 km | Seoul National |
| DEM | 高程 | m | 静态变量 | GLOBE from NOAA |
| Aspect | 坡向 | (°) | 静态变量 | GLOBE from NOAA |
| Slope | 坡度 | (°) | 静态变量 | GLOBE from NOAA |
| Clay | 表土黏土占比 | % | 静态变量 | HWSD from FAO |
| Sand | 表土砂占比 | % | 静态变量 | HWSD from FAO |
| Silt | 表土粉砂占比 | % | 静态变量 | HWSD from FAO |
Tab. 3
Mean and variance of root mean square error of the model /g C·m-2·d-1"
| 干旱指数分区 | LSTM模型 | RF模型 | SVM模型 | MLR模型 |
|---|---|---|---|---|
| 干旱区(GPP) | 0.62(±0.37) | 0.80(±0.20) | 0.98(±0.55) | 0.99(±0.32) |
| 干旱区(ER) | 0.78(±0.40) | 0.99(±0.65) | 1.01(±0.69) | 1.17(±0.66) |
| 半干旱区(GPP) | 0.74(±0.50) | 0.81(±0.52) | 0.84(±0.33) | 0.80(±0.51) |
| 半干旱区(ER) | 0.85(±1.13) | 0.96(±1.07) | 0.87(±0.76) | 0.90(±0.91) |
| 半湿润区(GPP) | 1.06(±2.04) | 1.31(±2.90) | 1.29(±2.64) | 2.99(±9.24) |
| 半湿润区(ER) | 0.80(±1.14) | 0.84(±0.94) | 0.90(±1.45) | 1.95(±1.05) |
| 湿润区(GPP) | 0.61(±0.39) | 0.63(±0.34) | 0.78(±0.29) | 0.70(±0.55) |
| 湿润区(ER) | 0.63(±0.45) | 0.64(±0.51) | 0.83(±0.46) | 0.78(±0.70) |
| [1] | Kanevski M, Pozdnoukhov A, Timonin V. Machine learning for spatial environmental data: Theory, applications, and software[M]. New York: EPFL Press, 2009: 40-52. |
| [2] | 朴世龙, 何悦, 王旭辉, 等. 中国陆地生态系统碳汇估算: 方法、进展、展望[J]. 中国科学: 地球科学, 2022, 52(6): 1010-1020. |
| [Piao Shilong, He Yue, Wang Xuhui, et al. Estimation of carbon sinks in terrestrial ecosystems in China: Methods, progress, and prospects[J]. Scientia Sinica (Terrae), 2022, 52(6): 1010-1020.] | |
| [3] | Zhan W W, Yang X, Ryu Y, et al. Two for one: Partitioning CO2 fluxes and understanding the relationship between solar-induced chlorophyll fluorescence and gross primary productivity using machine learning[J]. Agricultural and Forest Meteorology, 2022, 321: 108980, doi: 10.1016/j.agrformet.2022.108980. |
| [4] |
Pichler M, Hartig F. Machine learning and deep learning: A review for ecologists[J]. Methods in Ecology and Evolution, 2023, 14(4): 994-1016.
doi: 10.1111/mee3.v14.4 |
| [5] |
Reichstein M, Camps-Valls G, Stevens B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566(7743): 195-204.
doi: 10.1038/s41586-019-0912-1 |
| [6] | Hungershoefer K, Breon F-M, Peylin P, et al. Evaluation of various observing systems for the global monitoring of CO2 surface fluxes[J]. Atmospheric Chemistry and Physics, 2010, 10(21): 10503-10520. |
| [7] | Ciais P, Peylin P, Bousquet P. Regional biospheric carbon fluxes as inferred from atmospheric CO2 measurements[J]. Ecological Applications, 2000, 10(6): 1574-1589. |
| [8] |
Foley J A, Prentice I C, Ramankutty N, et al. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics[J]. Global Biogeochemical Cycles, 1996, 10(4): 603-628.
doi: 10.1029/96GB02692 |
| [9] |
Houghton R A, House J I, Pongratz J, et al. Carbon emissions from land use and land-cover change[J]. Biogeosciences, 2012, 9(12): 5125-5142.
doi: 10.5194/bg-9-5125-2012 |
| [10] | Liang S. Quantitative remote sensing of land surfaces[M]. Canada: John Wiley & Sons, 2005: 10-22. |
| [11] |
Liu X, Lu D, Zhang A, et al. Data-driven machine learning in environmental pollution: Gains and problems[J]. Environmental Science & Technology, 2022, 56(4): 2124-2133.
doi: 10.1021/acs.est.1c06157 |
| [12] |
Tuia D, Kellenberger B, Beery S, et al. Perspectives in machine learning for wildlife conservation[J]. Nature Communications, 2022, 13(1): 792, doi: 10.1038/s41467-022-27980-y.
pmid: 35140206 |
| [13] |
Silva L A, Zanella G. Robust leave-one-out cross-validation for high-dimensional Bayesian models[J]. Journal of the American Statistical Association, 2023, 119(547): 2369-2381.
doi: 10.1080/01621459.2023.2257893 |
| [14] | Watson G L. On model determination, prediction and statistical learning: The case of space-time data[M]. California: University of California, Los Angeles, 2021: 1-33. |
| [15] |
Meyer H, Pebesma E. Predicting into unknown space? Estimating the area of applicability of spatial prediction models[J]. Methods in Ecology and Evolution, 2021, 12(9): 1620-1633.
doi: 10.1111/mee3.v12.9 |
| [16] | Xu Z, Peng J, Dong J, et al. Spatial correlation between the changes of ecosystem service supply and demand: An ecological zoning approach[J]. Landscape and Urban Planning, 2022, 217: 104258, doi: 10.1016/j.landurbplan.2021.104258. |
| [17] | Shafahi A, Huang W R, Najibi M, et al. Poison frogs! targeted clean-label poisoning attacks on neural networks[J]. Advances in Neural Information Processing Systems, 2018, 31: 42, doi: 10.48550/arXiv.1804.00792. |
| [18] | Singla A, Bertino E, Verma D. Preparing network intrusion detection deep learning models with minimal data using adversarial domain adaptation[R]. United States:Proceedings of the 15th ACM Asia Conference on Computer and Communications Security, 2020. |
| [19] | Gu X, Easwaran A. Towards safe machine learning for cps: Infer uncertainty from training data[R]. Montreal, QC, Canada:In 10th ACM/IEEE International Conference on Cyber-Physical Systems, 2019. |
| [20] |
Zhu A X, Lu G, Liu J, et al. Spatial prediction based on Third Law of Geography[J]. Annals of GIS, 2018, 24(4): 225-240.
doi: 10.1080/19475683.2018.1534890 |
| [21] | Zhu A, Lü G, Zhou C, et al. Geographic similarity: Third law of geography[J]. Journal of Geo-information Science, 2020, 22(4): 673-679. |
| [22] |
Jegou H, Douze M, Schmid C. Product quantization for nearest neighbor search[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(1): 117-128.
doi: 10.1109/TPAMI.2010.57 |
| [23] |
Sheridan R P, Feuston B P, Maiorov V N, et al. Similarity to molecules in the training set is a good discriminator for prediction accuracy in QSAR[J]. Journal of Chemical Information and Computer Sciences, 2004, 44(6): 1912-1928.
pmid: 15554660 |
| [24] |
于贵瑞, 王秋凤, 朱先进. 区域尺度陆地生态系统碳收支评估方法及其不确定性[J]. 地理科学进展, 2011, 30(1): 103-113.
doi: 10.11820/dlkxjz.2011.01.013 |
|
[Yu Guirui, Wang Qiufeng, Zhu Xianjing. Methods and uncertainties in evaluating the carbon budgets of regional terrestrial ecosystems[J]. Progress in Geography, 2011, 30(1): 103-113.]
doi: 10.11820/dlkxjz.2011.01.013 |
|
| [25] | 李宏业, 谢惠春. 基于涡度相关法的不同生态系统碳通量研究进展[J]. 青海草业, 2024, 33(3): 33-38. |
| [Li Hongye, Xie Huichun. Research progress on carbon fluxes in different ecosystems based on eddy correlation method[J]. Qinghai Prataculture, 2024, 33(3): 33-38.] | |
| [26] |
Massman W J, Lee X. Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges[J]. Agricultural and Forest Meteorology, 2002, 113(1): 121-144.
doi: 10.1016/S0168-1923(02)00105-3 |
| [27] | Yu G, Fu Y, Sun X, et al. Recent progress and future directions of ChinaFLUX[J]. Science in China Series D: Earth Sciences, 2006, 49(Suppl. 2): 1-23. |
| [28] |
陈世苹, 游翠海, 胡中民, 等. 涡度相关技术及其在陆地生态系统通量研究中的应用[J]. 植物生态学报, 2020, 44(4): 291-304.
doi: 10.17521/cjpe.2019.0351 |
|
[Chen Shiping, You Cuihai, Hu Zhongmin, et al. Eddy covariance technique and its applications in flux observations of terrestrial ecosystems[J]. Chinese Journal of Plant Ecology, 2020, 44(4): 291-304.]
doi: 10.17521/cjpe.2019.0351 |
|
| [29] | 岳斌, 余赛芬, 董晶晶, 等. 温室气体通量测量方法及进展[J]. 光学学报, 2023, 43(18): 90-102. |
| [Yu Bing, Yu Saifen, Dong Jingjing, et al. Measurement methods and progress of greenhouse gas flux[J]. Optics Journal, 2023, 43(18): 90-102.] | |
| [30] | Knyazikhin Y. MODIS leaf area index (LAI) and fraction of photosynthetically active radiation absorbed by vegetation (FPAR) product (MOD15) algorithm theoretical basis document[DB/OL]. [1999-04-30]. http://eospso gsfc nasa gov/atbd/modistables html. |
| [31] |
Myneni R B, Hoffman S, Knyazikhin Y, et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data[J]. Remote Sensing of Environment, 2002, 83(1-2): 214-231.
doi: 10.1016/S0034-4257(02)00074-3 |
| [32] |
Ryu Y, Jiang C, Kobayashi H, et al. MODIS-derived global land products of shortwave radiation and diffuse and total photosynthetically active radiation at 5 km resolution from 2000[J]. Remote Sensing of Environment, 2018, 204: 812-825.
doi: 10.1016/j.rse.2017.09.021 |
| [33] | Hastings D, Dunbar P, Elphingstone G, et al. SAFARI 2000 digital elevation model, 1-km (GLOBE)[J]. ORNL Distributed Active Archive Center (DAAC) Dataset, 2002, 630, doi: 10.3334/ORNLDAAC/630. |
| [34] | Zhang W, Luo G, Chen C, et al. Quantifying the contribution of climate change and human activities to biophysical parameters in an arid region[J]. Ecological Indicators, 2021, 129: 107996, doi: 10.1016/j.ecolind.2021.107996. |
| [35] |
Xiao J F, Zhuang Q L, Law B E, et al. Assessing net ecosystem carbon exchange of US terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations[J]. Agricultural and Forest Meteorology, 2011, 151(1): 60-69.
doi: 10.1016/j.agrformet.2010.09.002 |
| [36] |
Gorelick N, Hancher M, Dixon M, et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment, 2017, 202: 18-27.
doi: 10.1016/j.rse.2017.06.031 |
| [37] | Kulanuwat L, Chantrapornchai C, Maleewong M, et al. Anomaly detection using a sliding window technique and data imputation with machine learning for hydrological time series[J]. Water, 2021, 13(13): 1862, doi: 10.3390/w13131862. |
| [38] |
Nash D J. World atlas of desertification[J]. The Geographical Journal, 1999, 165: 325-326.
doi: 10.2307/3060449 |
| [39] |
Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
doi: 10.1162/neco.1997.9.8.1735 pmid: 9377276 |
| [40] | Graves A, Graves A. Supervised sequence labelling with recurrent neural networks[M]. New York Dordrecht London: Springer-Verlag Berlin Heidelberg, 2012: 37-45. |
| [41] | Ancona M, Ceolini E, Öztireli C, et al. Explainable AI:Interpreting, explaining and visualizing deep learning[M]. Switzerlan: Springer Nature Switzerland AG, 2019: 169-191. |
| [42] | Zhu A X. Measuring uncertainty in class assignment for natural resource maps under fuzzy logic[J]. Photogrammetric Engineering and Remote Sensing, 1997, 63(10): 1195-1201. |
| [43] | Fan N Q, Zhao F H, Zhu L J, et al. Digital soil mapping with adaptive consideration of the applicability of environmental covariates over large areas[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 113: 102986, doi: 10.1016/j.jag.2022.102986. |
| [44] | Farahani M A, Goodwell A E. Causal drivers of land-atmosphere carbon fluxes from machine learning models and data[J]. Journal of Geophysical Research: Biogeosciences, 2024, 129(6): e2023JG 007815, doi: 10.1029/2023JG007815. |
| [45] | Huang C, He W, Liu J, et al. Exploring the potential of long short-term memory networks for predicting net CO2 exchange across various ecosystems with multi-source data[J]. Journal of Geophysical Research: Atmospheres, 2024, 129(7): e2023JD040418, doi: 10.1029/2023JD040418. |
| [46] |
Novick K A, Biederman J, Desai A, et al. The AmeriFlux network: A coalition of the willing[J]. Agricultural and Forest Meteorology, 2018, 249: 444-456.
doi: 10.1016/j.agrformet.2017.10.009 |
| [1] | ZHANG Chunyan, LI Yanying, WU Wen, CHEN Jing, MA Xingwei, NIE Xin. Causes and transport characteristics of two strong sandstorms in summer and autumn in the Hexi Corridor [J]. Arid Land Geography, 2025, 48(8): 1363-1373. |
| [2] | WANG Xi, LI Wei, ZHU Tao, JIN Wenzhe, SUN Jianfu. Progress and hotspot analysis of remote sensing research in the Ebinur Lake area based on bibliometrics [J]. Arid Land Geography, 2025, 48(4): 689-703. |
| [3] | YU Kaixin, LI Jifeng, ZHEN Tianle, ZHANG Xialei, LI Huiru, GUO Zhongling, CHANG Chunping, ZHAO Xueqing. Estimation of crop stubble biomass in the Bashang region of Zhangjiakou by combining optics and radar remote sensing [J]. Arid Land Geography, 2025, 48(3): 455-466. |
| [4] | TANG Yandong, ZANG Cuiping, YU Yunpeng, YU Qinglin. Developmental characteristics and influencing factors of gullies based on fractal theory in eastern Gansu Province [J]. Arid Land Geography, 2025, 48(2): 223-233. |
| [5] | LIU Wei, LING Hongbo, GONG Yanming, CHEN Fulong, SHAN Qianjuan. Evaluation of ecological environment quality in the mainstream of Tarim River based on improved remote sensing ecological index [J]. Arid Land Geography, 2025, 48(2): 271-282. |
| [6] | DENG Wenbin, SONG Sen, YI Hongmei. Spatiotemporal dynamics of ecological quality in the Zhundong region based on an arid modified remote sensing ecological index model [J]. Arid Land Geography, 2025, 48(12): 2073-2086. |
| [7] | GUO Jiali, MA Yonggang, PAN Heng, LI Na, SUN Changning, SUN Qian, ZHOU Wenchang, DANG Yuxuan. Comparative analysis of satellite monitoring of soil salinization in Ebinur Lake during spring and summer [J]. Arid Land Geography, 2025, 48(12): 2143-2157. |
| [8] | CHEN Xianlin, YAN Zhiyuan, LIU Quanming, LI Ruiping, ZHANG Shengwei. Spatiotemporal characteristics of drought in Inner Mongolia based on GEE and optimal remote sensing drought index [J]. Arid Land Geography, 2025, 48(11): 1903-1912. |
| [9] | ZHANG Yin, SUN Congjian, LIU Geng, CHAO Jinlong, GENG Tianwei, LIU Honghong. Spatiotemporal changes and driving factors of ecological environment quality in the Shanxi section of the Yellow River Basin from 2000 to 2023 [J]. Arid Land Geography, 2025, 48(11): 1983-1994. |
| [10] | Adiljan PARHAT, LI Gangyong, CHEN Chunbo, PENG Jian. Spatio-temporal shifts in ecological habitat quality of the oasis-desert critical zone on the northern slope of Kunlun Mountains: Taking the Yutian Oasis in Hotan Prefecture as an example [J]. Arid Land Geography, 2025, 48(10): 1721-1735. |
| [11] | XIN Yue, SU Lijuan, ZHENG Xucheng, LI Hui, YI Nana, JIN Yuchen. Hail characteristics and hail recognition method based on machine learning in Inner Mongolia [J]. Arid Land Geography, 2025, 48(1): 11-19. |
| [12] | XIE Junbo, WANG Xingpeng, HE Shuai, LIU Yang, ZHONG Zhibo, LI Yan, HONG Guojun. Soil salinity inversion in the Shajingzi irrigation district based on spectral index modeling [J]. Arid Land Geography, 2024, 47(7): 1199-1209. |
| [13] | LYU Na, GUO Mengjing, ZHAO Xin, LIU Kele, HUANG Yujia. Remote sensing inversion of water quality and spatiotemporal evolution characteristics of the Bosten Inland Freshwater Lake [J]. Arid Land Geography, 2024, 47(6): 953-966. |
| [14] | HUANG Manjie, LI Yanzhong, WANG Yuangang, YU Zhiguo, ZHUANG Jiacheng, XING Yincong. Evaluation of meteorological drought performance of multisource remote-sensing precipitation products in arid northwest China [J]. Arid Land Geography, 2024, 47(4): 549-560. |
| [15] | LIU Ruiliang, JIA Keli, LI Xiaoyu, CHEN Ruihua, WANG Yijing, ZHANG Junhua. Inversion of soil salt content by combining optical and microwave remote sensing in cultivated land [J]. Arid Land Geography, 2024, 47(3): 433-444. |
|
||
