Arid Land Geography ›› 2022, Vol. 45 ›› Issue (2): 346-358.doi: 10.12118/j.issn.1000–6060.2021.221
• Climatology and Hydrology • Previous Articles Next Articles
YU Zhixiang1,2(),LI Xia1(),YU Xiaojing3,4,ZHENG Yu5,Manlen AYITKEN1,LI Shuting1,WANG Nan1
Received:
2021-05-11
Revised:
2021-08-07
Online:
2022-03-25
Published:
2022-04-02
Contact:
Xia LI
E-mail:676854355@qq.com;susannaryy@163.com
YU Zhixiang,LI Xia,YU Xiaojing,ZHENG Yu,Manlen AYITKEN,LI Shuting,WANG Nan. Spatiotemporal variation characteristics of aerosol optical depth in Xinjiang from 2003 to 2019[J].Arid Land Geography, 2022, 45(2): 346-358.
Tab. 1
Statistical table of the mean AOD in four seasons in typical regions of Xinjiang"
地区 | 春季 | 夏季 | 秋季 | 冬季 | 年均值 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
均值 | 方差 | 均值 | 方差 | 均值 | 方差 | 均值 | 方差 | 均值 | 方差 | |||||
伊宁市 | 0.31 | 0.0024 | 0.27 | 0.0003 | 0.19 | 0.0009 | 0.15 | 0.0080 | 0.25 | 0.0008 | ||||
博乐市 | 0.21 | 0.0015 | 0.32 | 0.0020 | 0.26 | 0.0024 | 0.22 | 0.0182 | 0.27 | 0.0008 | ||||
独奎乌地区 | 0.33 | 0.0038 | 0.36 | 0.0011 | 0.25 | 0.0044 | 0.28 | 0.0275 | 0.31 | 0.0015 | ||||
石河子市 | 0.37 | 0.0036 | 0.39 | 0.0009 | 0.28 | 0.0041 | 0.26 | 0.0169 | 0.35 | 0.0024 | ||||
乌昌地区 | 0.29 | 0.0024 | 0.34 | 0.0012 | 0.24 | 0.0017 | 0.14 | 0.0069 | 0.29 | 0.0013 | ||||
吐鲁番盆地 | 0.46 | 0.0213 | 0.22 | 0.0023 | 0.21 | 0.0028 | 0.26 | 0.0061 | 0.29 | 0.0035 | ||||
焉耆盆地 | 0.54 | 0.0100 | 0.35 | 0.0023 | 0.24 | 0.0020 | 0.27 | 0.0221 | 0.36 | 0.0023 | ||||
库沙新地区 | 0.75 | 0.0345 | 0.51 | 0.0090 | 0.29 | 0.0058 | 0.23 | 0.0065 | 0.48 | 0.0043 | ||||
阿克苏市 | 0.84 | 0.0353 | 0.53 | 0.0130 | 0.31 | 0.0103 | 0.26 | 0.0057 | 0.53 | 0.0054 | ||||
喀什市 | 0.80 | 0.0348 | 0.47 | 0.0081 | 0.31 | 0.0095 | 0.17 | 0.0049 | 0.48 | 0.0036 | ||||
叶尔羌河流域 | 0.80 | 0.0310 | 0.49 | 0.0083 | 0.28 | 0.0097 | 0.18 | 0.0049 | 0.46 | 0.0034 | ||||
和田市 | 0.79 | 0.0265 | 0.58 | 0.0097 | 0.24 | 0.0050 | 0.18 | 0.0114 | 0.47 | 0.0026 | ||||
民丰地区 | 0.82 | 0.0206 | 0.69 | 0.0170 | 0.24 | 0.0036 | 0.22 | 0.0039 | 0.50 | 0.0027 | ||||
若羌地区 | 0.93 | 0.0154 | 0.61 | 0.0121 | 0.25 | 0.0032 | 0.26 | 0.0090 | 0.52 | 0.0030 |
Tab. 2
Significance test of AOD annual change trend in typical regions of Xinjiang from 2003 to 2019"
地区 | 相关系数(r) | 变化趋势 | 显著性 |
---|---|---|---|
伊宁市 | 0.388 | 上升 | 不显著 |
博乐市 | 0.459 | 上升 | 不显著 |
独奎乌地区 | 0.435 | 上升 | 不显著 |
石河子市 | 0.662 | 上升 | 显著 |
乌昌地区 | 0.503 | 上升 | 显著 |
吐鲁番盆地 | -0.249 | 下降 | 不显著 |
焉耆盆地 | 0.033 | 上升 | 不显著 |
库沙新地区 | -0.118 | 下降 | 不显著 |
阿克苏市 | -0.206 | 下降 | 不显著 |
喀什市 | -0.292 | 下降 | 不显著 |
叶尔羌河流域 | -0.371 | 下降 | 不显著 |
和田市 | -0.223 | 下降 | 不显著 |
民丰地区 | 0.103 | 上升 | 不显著 |
若羌地区 | 0.046 | 上升 | 不显著 |
[1] | 李成才, 毛节泰, 刘启汉, 等. MODIS卫星遥感气溶胶产品在北京市大气污染研究中的应用[J]. 中国科学D辑, 2005, 35(增刊1):177-186. |
[ Li Chengcai, Mao Jietai, Liu Qihan, et al. Application of MODIS AOD products in the study of air pollution in Beijing[J]. Science in China (Series D), 2005, 35(Suppl. 1):177-186. ] | |
[2] | 吴邦灿, 费龙. 现代环境监测技术[M]. 北京: 中国环境科学出版社, 2014. |
[ Wu Bangcan, Fei Long. Modern environmental monitoring technology[M]. Beijing: China Environmental Science Press, 2014. ] | |
[3] | Kaiser D P, Qian Y. Decreasing trends in sunshine duration over China for 1954—1998: Indication of increased haze pollution?[J]. Geophysical Research Letters, 2002, 29(21):381-384. |
[4] |
Rosenfeld D, Dai J, Yu X, et al. Inverse relations between amounts of air pollution and orographic precipitation[J]. Science, 2007, 315(5817):1396-1398.
pmid: 17347436 |
[5] |
Cao J J, Chow J C. Recent advances for aerosol and environment study in Asia[J]. Particuology, 2013, 11(1):3-4.
doi: 10.1016/j.partic.2012.12.002 |
[6] | 张华, 黄建平. 对IPCC第五次评估报告关于人为和自然辐射强迫的解读[J]. 气候变化研究进展, 2014, 10(1):40-44. |
[ Zhang Hua, Huang Jianping. An interpretation of man-made and natural radiative forcing in IPCC Fifth Assessment Report[J]. Climate Change Research, 2014, 10(1):40-44. ] | |
[7] |
Van Zelm R V, Huijbregts M A J, Hollander H A Den, et al. European characterization factors for human health damage of PM10 and ozone in life cycle impact assessment[J]. Atmospheric Environment, 2008, 42:441-453.
doi: 10.1016/j.atmosenv.2007.09.072 |
[8] |
He Q, Huang B. Satellite-based mapping of daily high-resolution ground PM2.5 in China via space-time regression modeling[J]. Remote Sensing of Environment, 2018, 206:72-83.
doi: 10.1016/j.rse.2017.12.018 |
[9] | 黄观, 刘志红, 刘伟, 等. 北疆地区气溶胶光学厚度的时空特征[J]. 生态与农村环境学报, 2015, 31(3):286-292. |
[ Huang Guan, Liu Zhihong, Liu Wei, et al. Spatio-temporal characteristics of aerosol optical depth in north Xinjiang[J]. Journal of Ecology and Rural Environment, 2015, 31(3):286-292. ] | |
[10] | Xia X, Chen H, Li Z, et al. Significant reduction of surface solar irradiance induced by aerosol in a suburban region in northeastern China[J]. Journal of Geophysical Research, 2007, 112(D22):928-935. |
[11] | Li S, Chen L, Xiong X, et al. Retrieval of the haze optical thickness in North China Plain using MODIS data[J]. IEEE Transactions on Geoscience & Remote Sensing, 2013, 51(5):2528-2540. |
[12] | 罗云峰, 李维亮, 周秀骥. 20世纪80年代中国地区大气气溶胶光学厚度的平均状况分析[J]. 气象学报, 2001, 59(1):77-87. |
[ Luo Yunfeng, Li Weiliang, Zhou Xiuji. Analysis of the 1980’s atmospheric aerosol optical depth over China[J]. Acta Meteorologica Sinica, 2001, 59(1):77-87. ] | |
[13] | 罗云峰, 吕达仁, 周秀骥, 等. 30年来我国大气气溶胶光学厚度平均分布特征分析[J]. 大气科学, 2002, 26(6):721-730. |
[ Luo Yunfeng, Lü Daren, Zhou Xiuji, et al. Analyses on the spatial distribution of aerosol optical depth over China in recent 30 years[J]. Chinese Journal of Atmospheric Sciences, 2002, 26(6):721-730. ] | |
[14] | 王银牌, 喻鑫, 谢广奇. 中国近15年气溶胶光学厚度时空分布特征[J]. 中国环境科学, 2018, 38(2):426-434. |
[ Wang Yinpai, Yu Xin, Xie Guangqi. Spatial distribution and temporal variation of aerosol optical depth over China in the past 15 years[J]. China Environmental Science, 2018, 38(2):426-434. ] | |
[15] | 张亮林, 潘竟虎, 张大弘. 基于MODIS数据的中国气溶胶光学厚度时空分布特征[J]. 环境科学学报, 2018, 38(11):4431-4439. |
[ Zhang Lianglin, Pan Jinghu, Zhang Dahong. Spatio-temporal distribution characteristics of aerosol optical depths in China based on MODIS data[J]. Acta Scientiae Circumstantiae, 2018, 38(11):4431-4439. ] | |
[16] | 李成才, 毛节泰, 刘启汉, 等. 利用MODIS研究中国东部地区气溶胶光学厚度的分布和季节变化特征[J]. 科学通报, 2003, 48(19):2094-2100. |
[ Li Chengcai, Mao Jietai, Liu Qihan, et al. Analysis of distribution and seasonal variation characteristics of aerosol optical depth over the east of China by MODIS[J]. Chinese Science Bulletin, 2003, 48(19):2094-2100. ] | |
[17] | 郑小波, 周成霞, 罗宇翔, 等. 中国各省区近10年遥感气溶胶光学厚度和变化[J]. 生态环境学报, 2011, 20(4):595-599. |
[ Zheng Xiaobo, Zhou Chengxia, Luo Yuxiang, et al. Chinese province-level variations and trends in aerosol optical depth from recent 10 years of remote sensing data[J]. Ecology and Environmental Sciences, 2011, 20(4):595-599. ] | |
[18] | 张西雅, 扈海波. 京津冀地区气溶胶时空分布及与城市化关系的研究[J]. 大气科学, 2017, 41(4):797-810. |
[ Zhang Xiya, Hu Haibo. Spatio-temporal characteristics of aerosol optical depth and their relationship with urbanization over Beijing-Tianjin-Hebei region[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(4):797-810. ] | |
[19] | 王晨莹, 何沐全, 陈军辉, 等. 2006—2017年四川盆地MODIS气溶胶光学厚度时空变化特征环[J]. 环境科学研究, 2020, 33(1):54-62. |
[ Wang Chenying, He Muquan, Chen Junhui, et al. Temporal and spatial variation characteristics of MODIS aerosol optical depth in Sichuan Basin from 2006 to 2017[J]. Research of Environmental Sciences, 2020, 33(1):54-62. ] | |
[20] | 王捷纯, 邓玉娇. 利用MODIS C6产品分析广东省气溶胶光学厚度时空特征[J]. 气象科技, 2018, 46(4):809-813. |
[ Wang Jiechun, Deng Yujiao. Spatial-temporal characteristics of aerosol optical depth in Guangdong based on MODIS C6 data[J]. Meteorological Science and Technology, 2018, 46(4):809-813. ] | |
[21] | 赵辉, 郑有飞, 徐静馨, 等. 乌鲁木齐市大气污染物浓度的变化特征[J]. 环境化学, 2016, 34(11):2118-2126. |
[ Zhao Hui, Zheng Youfei, Xu Jingxin, et al. Variation characteristics of air pollutant concentrations in Urumqi[J]. Environmental Chemistry, 2016, 34(11):2118-2126. ] | |
[22] | 谢运兴, 唐晓, 郭宇宏, 等. 新疆大气颗粒物的时空分布特征[J]. 中国环境监测, 2019, 35(1):26-36. |
[ Xie Yunxing, Tang Xiao, Guo Yuhong, et al. Spatial and temporal distribution of atmospheric particulate matter in Xinjiang[J]. Environmental Monitoring in China, 2019, 35(1):26-36. ] | |
[23] | 赵克明, 李娜, 李霞, 等. 乌鲁木齐冬季焚风天气过程大气扩散条件特征分析[J]. 干旱区地理, 2021, 44(6):1534-1544. |
[ Zhao Keming, Li Na, Li Xia, et al. Characteristic analysis of atmospheric diffusion conditions of winter foehn weather process in Urumqi City[J]. Arid Land Geography, 2021, 44(6):1534-1544. ] | |
[24] | Li X, Xia X, Wang L, et al. The role of foehn in the formation of heavy air pollution events in Urumqi, China[J]. Journal of Geophysical Research, 2015, 120:5371-5384. |
[25] |
Li X, Xia X, Zhong S, et al. Shallow foehn on the northern leeside of Tianshan Mountains and its influence on atmospheric boundary layer over Urumqi, China: A climatological study[J]. Atmospheric Research, 2020, 240:104940, doi: 10.1016/j.atmosres.2020.104940.
doi: 10.1016/j.atmosres.2020.104940 |
[26] | 中华人民共和国生态环境部. 2018中国生态环境状况公报[EB/OL]. [2019-05-29]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk15/201912/t20191231_754139.html. |
[Ministry of Ecology and Environment of the People’s Republic of China. China eco-environmental quality report 2018[EB/OL]. [2019-05-29]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk15/201912/t20191231_754139.html. ] | |
[27] | 新疆维吾尔自治区生态环境厅. 新疆维吾尔自治区2018年环境状况公报[EB/OL]. [2019-06-11]. http://sthjt.xinjiang.gov.cn/xjepd/hjzkgb/202001/ad13302dfddb40f4946db95c83fd08e2/files/44f1bd47a80140fcb99a859cd045166e.pdf. |
[Department of Ecological Environment of Xinjiang. Xinjiang environmental quality report 2018[EB/OL]. [2019-06-11]. http://sthjt.xinjiang.gov.cn/xjepd/hjzkgb/202001/ad13302dfddb40f4946db95c83fd08e2/files/44f1bd47a80140fcb99a859cd045166e.pdf. ] | |
[28] | 赵仕伟, 高晓清. 利用MODIS C6数据分析中国西北地区气溶胶光学厚度时空变化特征[J]. 环境科学, 2017, 38(7):2637-2646. |
[ Zhao Shiwei, Gao Xiaoqing. Analysis of spatio-temporal distribution and variation characteristics of aerosol optical depth over the northwest of China by MODIS C6 product[J]. Environmental Science, 2017, 38(7):2637-2646. ] | |
[29] | 孙晓雷, 甘伟, 林燕, 等. MODIS 3 km气溶胶光学厚度产品检验及其环境空气质量指示[J]. 环境科学学报, 2015, 35(6):1657-1666. |
[ Sun Xiaolei, Gan Wei, Lin Yan, et al. Validation of MODIS 3 km aerosol optical depth product and its air quality indication[J]. Acta Scientiae Circumstantiae, 2015, 35(6):1657-1666. ] | |
[30] |
Wei J, Li Z, Peng Y, et al. MODIS Collection 6.1 aerosol optical depth products over land and ocean: Validation and comparison[J]. Atmospheric Environment, 2018, 201:428-440.
doi: 10.1016/j.atmosenv.2018.12.004 |
[31] |
Wang Y, Yuan Q, Li T, et al. Evaluation and comparison of MODIS Collection 6.1 aerosol optical depth against AERONET over regions in China with multifarious underlying surfaces[J]. Atmospheric Environment, 2019, 200:280-301.
doi: 10.1016/j.atmosenv.2018.12.023 |
[32] |
Imani Maryam. Particulate matter (PM2.5 and PM10) generation map using MODIS Level-1 satellite images and deep neural network[J]. Journal of Environmental Management, 2021, 281:111888, doi: 10.1016/j.jenvman.2020.111888.
doi: 10.1016/j.jenvman.2020.111888 |
[33] | 陈鹏, 张青, 李悦. 乌鲁木齐市MODIS气溶胶光学厚度与空气质量指数相关性分析[J]. 沙漠与绿洲气象, 2018, 12(2):71-77. |
[ Chen Peng, Zhang Qing, Li Yue. Analysis on correlation between MODIS aerosol optical depth values and air quality indices in Urumqi[J]. Desert and Oasis Meteorology, 2018, 12(2):71-77. ] | |
[34] | 黄观, 刘伟, 刘志红, 等. 乌鲁木齐市MODIS气溶胶光学厚度与PM10浓度关系模型研究[J]. 环境科学学报, 2016, 36(2):649-657. |
[ Huang Guan, Liu Wei, Liu Zhihong, et al. Relationship between MODIS aerosol optical depth and PM10 ground concentration in Urumqi[J]. Acta Scientiae Circumstantiae, 2016, 36(2):649-657. ] | |
[35] | 孙小雲, 房彦杰, 赵景峰, 等. 塔克拉玛干沙漠输沙势时空分布特征[J]. 干旱区地理, 2020, 43(1):38-47. |
[ Sun Xiaoyun, Fang Yanjie, Zhao Jingfeng, et al. Spatial and temporal distribution characteristics of sand drift potential in Taklimakan Desert[J]. Arid Land Geography, 2020, 43(1):38-47. ] | |
[36] | 刘新春, 陈红娜, 赵克蕾, 等. 乌鲁木齐大气细颗粒物PM2.5水溶性离子浓度特征及其来源分析[J]. 生态环境学报, 2015, 24(12):2002-2008. |
[ Liu Xinchun, Chen Hongna, Zhao Kelei, et al. Analysis the effect and source on water-soluble ions of fine particulate matter (PM2.5) in Urumqi[J]. Ecology and Environmental Sciences, 2015, 24(12):2002-2008. ] | |
[37] | 吴序鹏, 杨军, 车慧正, 等. 塔克拉玛干沙漠地区气溶胶光学厚度卫星遥感产品验证[J]. 气候与环境研究, 2012, 17(2):149-159. |
[ Wu Xupeng, Yang Jun, Che Huizheng, et al. Verification for the satellite remote sensing products of aerosol optical depth in Taklimakan Desert area[J]. Climatic and Environmental Research, 2012, 17(2):149-159. ] | |
[38] |
Kaufman Y J, Wald A E, Remer L A, et al. The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(5):1286-1298.
doi: 10.1109/36.628795 |
[39] | 李忠宾, 王楠, 张自力, 等. 中国地区MODIS气溶胶光学厚度产品综合验证及分析[J]. 中国环境科学, 2020, 40(10):4190-4204. |
[ Li Zhongbin, Wang Nan, Zhang Zili, et al. Validation and analyzation of MODIS aerosol optical depth product over China[J]. China Environmental Science, 2020, 40(10):4190-4204. ] | |
[40] | Wei J, Li Z Q, Sun L, et al. An improved merge schemes for MODIS Collection 6.1 Dark Target and Deep Blue combined aerosol products[J]. Atmospheric Environment, 2019, 202:315-327. |
[41] | Levy R, Mattoo S, Munchak L, et al. The Collection 6 MODIS aerosol products over land and ocean[J]. Atmospheric Measurement Techniques, 2013, 6(11):159-259. |
[42] | 胡俊, 钟珂, 亢燕铭, 等. 新疆典型城市气溶胶光学厚度变化特征[J]. 中国环境科学, 2019, 39(10):4074-4081. |
[ Hu Jun, Zhong Ke, Kang Yanming, et al. Variation in aerosol optical depth over the typical cities in the Xinjiang region[J]. China Environmental Science, 2019, 39(10):4074-4081. ] | |
[43] | 付宏臣, 孙艳玲, 陈莉, 等. 基于AOD数据与GWR模型的2016年新疆地区PM2.5和PM10时空分布特征[J]. 环境科学学报, 2020, 40(1):27-35. |
[ Fu Hongchen, Sun Yanling, Chen Li, et al. Temporal and spatial distribution characteristics of PM2.5 and PM10 in Xinjiang region in 2016 based on AOD data and GWR model[J]. Acta Scientiae Circumstantiae, 2020, 40(1):27-35. ] | |
[44] | 岳辉, 刘英, 张元敏. 基于MODIS数据的中国地区气溶胶光学厚度时空变化特征[J]. 环境污染与防治, 2020, 42(1):89-93. |
[ Yue Hui, Liu Ying, Zhang Yuanmin. Study on temporal and spatial variability of aerosol optical depth in China region based on MODIS data[J]. Environmental Pollution & Control, 2020, 42(1):89-93. ] | |
[45] | 刘尊驰. 南疆典型沙区沙尘天气发生发展规律研究[D]. 石河子: 石河子大学, 2016. |
[ Liu Zunchi. The occurrence and development of sand dust weather in the typical area of southern Xinjiang, China[D]. Shihezi: Shihezi University, 2016. ] | |
[46] | 贾瑞, 李君, 祝清哲, 等. 中国西北地区气溶胶的三维分布特征及其成因[J]. 中国沙漠, 2021, 41(3):34-43. |
[ Jia Rui, Li Jun, Zhu Qingzhe, et al. Three-dimensional distribution and formation causes of aerosols over northwest China[J]. Journal of Desert Research, 2021, 41(3):34-43. ] | |
[47] | 谭婷, 王天竺. 1961—2015年塔里木盆地夏季沙尘天气时空特征及环流背景分析[J]. 防灾科技学院学报, 2020, 22(3):69-76. |
[ Tan Ting, Wang Tianzhu. Analysis on spatial and temporal characteristics and circulation background of dust weather in Tarim Basin in summer from 1961 to 2015[J]. Journal of Institute of Disaster Prevention, 2020, 22(3):69-76. ] |
[1] | KANG Limin, TENG Xinru, CHE Jiahang, HUAI Baojuan. Spatiotemporal variations of snow cover on the northern slope of Kunlun Mountains [J]. Arid Land Geography, 2024, 47(9): 1462-1471. |
[2] | LI Yaqian, YANG Jianhua, XIA Haobin, WU Jianjun. Spatiotemporal variations of vegetation in the Ili River Basin from 2000 to 2022 [J]. Arid Land Geography, 2024, 47(5): 741-752. |
[3] | ZHAO Mingjie, WANG Ninglian, SHI Chenlie, HOU Jingqi. Temporal and spatial variations of lake ice phenology in large lakes of Central Asia from 2000 to 2020 [J]. Arid Land Geography, 2024, 47(4): 561-575. |
[4] | GUO Min, LI Xinhu, WANG Hongchao, LI Jialin. Effect of salt crust thickness on distribution characteristics of soil water and salt [J]. Arid Land Geography, 2023, 46(8): 1303-1313. |
[5] | LIANG Shichuan,QIAO Hua,LYU Dong,HE Qiang. Distribution characteristics and main controlling factors of geohazards in Ili Valley [J]. Arid Land Geography, 2023, 46(6): 880-888. |
[6] | WANG Zichao, WANG Chunlei, MA Junjun. Estimation of downward surface longwave radiation in Heihe River Basin with remotely sensed data [J]. Arid Land Geography, 2023, 46(2): 243-252. |
[7] | WU Zhixiang, ZHANG Zhibin, ZHAO Xuewei, CHEN Long, MA Xiaomin, CHAI Jiao. Spatiotemporal distribution pattern and influencing factors of A-level tourist attractions in northwestern China [J]. Arid Land Geography, 2023, 46(12): 2061-2073. |
[8] | JIANG Ping, HU Liequn, XU Tingting. Spatiotemporal variations of vapor pressure deficit in Xinjiang in recent 60 years [J]. Arid Land Geography, 2023, 46(1): 1-10. |
[9] | WEI Juanjuan, WAN Yu, ZHANG Junlan, ZHAO Fenghuan, LI Anbei. Circulation classification and cause analysis of the warm-area blizzards in Tacheng area in recent 20 years [J]. Arid Land Geography, 2022, 45(6): 1718-1728. |
[10] | WANG Liming, LU Yinong, LI Xiaohu, LIU Xuling. Distribution characteristics of intangible cultural heritage and tourism activation mechanism in Xinjiang [J]. Arid Land Geography, 2022, 45(6): 1968-1977. |
[11] | Aierken TUERSUN,Yusufujiang RUSULI,CUI Yishuang,Kadiayi ALIMU,Miriayi MAITUDI. Temporal and spatial variations of lake ice phenology in large lakes of Xinjiang from 2000 to 2019 [J]. Arid Land Geography, 2022, 45(5): 1440-1449. |
[12] | WANG Jinjie,DING Jianli,ZHANG Zipeng. Change of ecological environment in Turpan and Hami cities based on remote sensing ecology index [J]. Arid Land Geography, 2022, 45(5): 1591-1603. |
[13] | ZHANG Zhongfu. Spatial division and sustainable development and utilization strategy of geological relics in Gansu section of the Yellow River Basin [J]. Arid Land Geography, 2022, 45(4): 1235-1243. |
[14] | QIN Qiyong,LI Xuemei,ZHANG Bo,LI Chao,SUN Tianyao. Change of ice phenology in the Sayram Lake from 2000 to 2019 [J]. Arid Land Geography, 2022, 45(1): 37-45. |
[15] | GU Wei,Guli JIAPAER,YIN Hanmin,JIANG Liangliang,ZANG Xiaofang. Spatial and temporal distribution characteristic and division research of solar energy resources in southern Xinjiang [J]. Arid Land Geography, 2021, 44(6): 1665-1675. |
|