Arid Land Geography ›› 2025, Vol. 48 ›› Issue (1): 94-104.doi: 10.12118/j.issn.1000-6060.2024.125
• Soil Ecology • Previous Articles Next Articles
YIN Yidan1,2(), YU Tengfei1,3,4(), HAN Tuo1,3,4, TAN Tianyi5, CHEN Xiaoling5
Received:
2024-02-28
Revised:
2024-05-21
Online:
2025-01-25
Published:
2025-01-21
Contact:
YU Tengfei
E-mail:yinyidan@nieer.ac.cn;yutf@lzb.ac.cn
YIN Yidan, YU Tengfei, HAN Tuo, TAN Tianyi, CHEN Xiaoling. Spatial differentiation and its influencing factors of soil carbon in Populus euphratica Oliv. forest in the lower reach of Heihe River[J].Arid Land Geography, 2025, 48(1): 94-104.
Tab. 1
Vertical variations of soil carbon content in soil layers from 0 to 100 cm"
深度/cm | SOC/g·kg-1 | SIC/g·kg-1 | SIC:SOC |
---|---|---|---|
0~10 | 6.22±1.18a | 12.87±1.71a | 3.87±0.65a |
10~20 | 3.38±0.55b | 11.69±0.76a | 5.01±0.63ab |
20~40 | 2.28±0.29b | 10.89±0.75a | 5.80±0.52ac |
40~60 | 2.13±0.29b | 10.98±0.82a | 6.29±0.53ac |
60~80 | 1.93±0.45b | 9.11±1.05a | 6.77±0.65bc |
80~100 | 1.46±0.27b | 9.18±0.99a | 7.89±0.99c |
Tab. 2
Spatial variations of soil carbon content in soil layers from 0 to 100 cm in different regions"
区域 | SOC/g·kg-1 | SIC/g·kg-1 | SIC:SOC |
---|---|---|---|
西河干流河岸带 | 18.21±3.19a | 54.98±8.14a | 4.88±0.72a |
东河中上游河岸带 | 20.34±7.89a | 69.45±12.48a | 6.19±1.31a |
东河下游河岸带 | 17.39±2.46a | 70.61±3.87a | 6.17±0.55a |
东河下游绿洲核心区 | 13.66±2.74a | 63.87±5.09a | 6.52±0.35a |
Tab. 3
Vertical changes of soil environmental factors in soil layers from 0 to 100 cm"
深度 /cm | SWC /% | EC /μS·cm-1 | BD /g·cm-3 | Clay /% | Silt /% | Sand /% | pH | Na+ /mg·kg-1 | K+ /mg·kg-1 | Mg2+ /mg·kg-1 | Ca2+ /mg·kg-1 | Cl- /mg·kg-1 | SO42- /mg·kg-1 | NO3- /mg·kg-1 | NH4+ /mg·kg-1 | F- /mg·kg-1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0~10 | 2.67a | 6565.01a | 1.20a | 0.94a | 16.39a | 82.34a | 8.26a | 12661.18a | 2054.27a | 2437.60a | 2557.03a | 15192.84a | 36185.14a | 68.89a | 26.24a | 3.26a |
10~20 | 4.05a | 1673.37b | 1.33a | 1.24a | 21.31a | 77.41a | 8.26a | 2201.89b | 440.93a | 512.98ab | 716.86b | 2369.10ab | 3790.51b | 308.73a | 2.69b | 2.01a |
20~40 | 4.81a | 864.35b | 1.34ab | 0.93a | 19.37a | 79.70a | 8.32a | 862.98b | 219.97a | 234.56b | 448.77b | 735.14b | 1682.19b | 126.49a | 1.91b | 2.27a |
40~60 | 6.08a | 668.27b | 1.35ab | 1.28a | 23.51a | 75.21a | 8.29a | 597.67b | 166.50a | 165.39b | 270.33b | 522.72b | 870.95b | 75.26a | 1.44b | 1.86a |
60~80 | 4.24a | 511.39b | 1.43ab | 1.12a | 17.20a | 81.68a | 8.25a | 461.83b | 128.85a | 158.42b | 208.77b | 373.32b | 691.78b | 40.03a | 1.65b | 2.28a |
80~100 | 4.41a | 549.81b | 1.40b | 0.65a | 12.18a | 87.09a | 8.26a | 476.96b | 94.68a | 174.27b | 234.79b | 411.50b | 725.31b | 33.74a | 1.41b | 2.31a |
Tab. 4
Horizontal changes of soil environmental factors in soil layers from 0 to 100 cm in different regions"
区域 | SWC /% | EC /μS·cm-1 | BD /g·cm-3 | Clay /% | Silt /% | Sand /% | pH | Na+ /mg·kg-1 | K+ /mg·kg-1 | Mg2+ /mg·kg-1 | Ca2+ /mg·kg-1 | Cl- /mg·kg-1 | SO42- /mg·kg-1 | NO3- /mg·kg-1 | NH4+ /mg·kg-1 | F- /mg·kg-1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
西河干流 河岸带 | 3.41a | 1643.04 a | 1.47a | 0.99a | 17.81a | 81.17a | 8.30a | 12837.45a | 1392.28a | 3782.32a | 4970.43a | 9943.69a | 28759.40a | 175.53a | 25.49a | 19.01a |
东河中上 游河岸带 | 5.30a | 3059.05 a | 1.45a | 1.30a | 21.88a | 76.64a | 8.25a | 34032.60a | 2746.63a | 7250.30a | 3711.86a | 28250.52a | 56831.60a | 1523.25a | 9.09a | 15.54a |
东河下游 河岸带 | 4.40a | 2063.75 a | 1.12b | 0.84a | 19.14a | 79.94a | 8.25a | 20224.23a | 7124.88a | 2839.65a | 7440.17a | 38355.39a | 86618.00a | 404.57a | 42.15a | 7.41a |
东河下 游绿洲 核心区 | 4.40a | 455.63 a | 1.33ab | 0.98a | 14.48a | 84.54a | 8.29a | 1955.77a | 1157.02a | 860.60a | 1623.78a | 1868.88a | 3574.50a | 509.24a | 5.49a | 5.12a |
[1] |
高晓宇, 郝海超, 张雪琪, 等. 中国西北干旱区植被水分利用效率变化对气象要素的响应—以新疆为例[J]. 干旱区地理, 2023, 46(7): 1111-1120.
doi: 10.12118/j.issn.1000-6060.2022.545 |
[Gao Xiaoyu, Hao Haichao, Zhang Xueqi, et al. Responses of vegetation water use efficiency to meteorological factors in arid areas of northwest China: A case of Xinjiang[J]. Arid Land Geography, 2023, 46(7): 1111-1120.]
doi: 10.12118/j.issn.1000-6060.2022.545 |
|
[2] | Zhang T J, Chen Y N, Ali S. Abiotic stress and human activities reduce plant diversity in desert riparian forests[J]. Ecological Indicators, 2023, 152: 110340, doi: 10.1016/j.ecolind.2023.110340. |
[3] | 杨玉海, 李卫红, 李慧敏, 等. 塔里木河下游退化生态系统恢复对土壤有机碳的影响[J]. 土壤通报, 2010, 41(4): 855-859. |
[Yang Yuhai, Li Weihong, Li Huimin, et al. Impacts of degraded ecological system restoration on soil organic carbon in inland basin of Tarim River[J]. Chinese Journal of Soil Science, 2010, 41(4): 855-859.] | |
[4] |
马继龙, 史军辉, 王新英, 等. 洪水漫溢对塔里木河中游河岸胡杨林土壤有机碳及活性组分的影响[J]. 干旱区研究, 2023, 40(8): 1248-1257.
doi: 10.13866/j.azr.2023.08.05 |
[Ma Jilong, Shi Junhui, Wang Xinying, et al. Effects of flood overflow on soil organic carbon and active components of Populus euphratica forest in the middle reaches of the Tarim River[J]. Arid Zone Research, 2023, 40(8): 1248-1257.]
doi: 10.13866/j.azr.2023.08.05 |
|
[5] |
史尧方, 薛娴, 尤全刚, 等. 阿里荒漠区土壤有机碳分布特征及其与土壤物理性质的关系[J]. 中国沙漠, 2023, 43(3): 284-294.
doi: 10.7522/j.issn.1000-694X.2023.00015 |
[Shi Yaofang, Xue Xian, You Quangang, et al. Distribution characteristics of soil organic carbon and its relationship with soil physical properties in Ali Desert area, Tibetan Plateau[J]. Journal of Desert Research, 2023, 43(3): 284-294.]
doi: 10.7522/j.issn.1000-694X.2023.00015 |
|
[6] |
Plaza C, Zaccone C, Sawicka K, et al. Soil resources and element stocks in drylands to face global issues[J]. Scientific Reports, 2018, 8: 13788, doi: 10.1038/s41598-018-32229-0.
pmid: 30214005 |
[7] | Lal R. Carbon sequestration in dryland ecosystems[J]. Environ-mental Management, 2004, 33(4): 528-544. |
[8] | Mi N, Wang S Q, Liu J Y, et al. Soil inorganic carbon storage pattern in China[J]. Global Change Biology, 2008, 14(10): 2380-2387. |
[9] | Song X D, Yang F, Wu H Y, et al. Significant loss of soil inorganic carbon at the continental scale[J]. National Science Review, 2021, 9(2): nwab120, doi: 10.1093/nsr/nwab120. |
[10] | Sparks D L. Advances in agronomy[M]. London: Academic Press, 2023: 229-265. |
[11] |
Huang Y Y, Song X D, Wang Y P, et al. Size, distribution, and vulnerability of the global soil inorganic carbon[J]. Science, 2024, 384(6692): 233-239.
doi: 10.1126/science.adi7918 pmid: 38603490 |
[12] | Yusup A, Halik Ü, Abliz A, et al. Population structure and spatial distribution pattern of Populus euphratica riparian forest under environmental heterogeneity along the Tarim River, northwest China[J]. Frontiers in Plant Science, 2022, 13: 844819, doi: 10.3389/fpls.2022.844819. |
[13] | Peng Y, He G J, Wang G Z. Spatial-temporal analysis of the changes in Populus euphratica distribution in the Tarim National Nature Reserve over the past 60 years[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 113: 103000, doi: 10.1016/j.jag.2022.103000. |
[14] |
韩路, 冯宇, 李沅楷, 等. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102.
doi: 10.17521/cjpe.2022.0510 |
[Han Lu, Feng Yu, Li Yuankai, et al. Effects of groundwater depth on carbon, nitrogen, phosphorus ecological stoichiometric and homeostasis characteristics of Populus pruinosa leaves and soil in Tarim Basin, Xinjiang, China[J]. Chinese Journal of Plant Ecology, 2024, 48(1): 92-102.] | |
[15] |
王振, 李均力, 张久丹, 等. 输水漫溢对塔里木河中游胡杨林恢复的影响[J]. 干旱区地理, 2023, 46(1): 94-102.
doi: 10.12118/j.issn.1000-6060.2022.213 |
[Wang Zhen, Li Junli, Zhang Jiudan, et al. Influences of ecological water conveyance on Populus euphratica forest restoration in the middle reaches of Tarim River[J]. Arid Land Geography, 2023, 46(1): 94-102.]
doi: 10.12118/j.issn.1000-6060.2022.213 |
|
[16] | Dong L W, Sun Y, Ran J Z, et al. Ecosystem organic carbon storage and their drivers across the drylands of China[J]. Catena, 2022, 214: 106280, doi: 10.1016/j.catena.2022.106280. |
[17] | Wei G R, Zhang C L, Li Q, et al. An evaluation of topsoil carbon storage in Chinese deserts[J]. Science of the Total Environment, 2023, 872: 162284, doi: 10.1016/j.scitotenv.2023.162284. |
[18] | Zhang Z P, Ding J L, Zhu C M, et al. Changes in soil organic carbon stocks from 1980—1990 and 2010—2020 in the northwest arid zone of China[J]. Land Degradation & Development, 2022, 33(15): 2713-2727. |
[19] |
陈雨晴, 席海洋, 程文举, 等. 荒漠河岸林区3种典型植物群落下土壤碳氮含量特征[J]. 中国沙漠, 2023, 43(1): 150-159.
doi: 10.7522/j.issn.1000-694X.2022.00116 |
[Chen Yuqing, Xi Haiyang, Cheng Wenju, et al. Characteristics of soil carbon and nitrogen change in three typical plant communities in desert riparian forest area[J]. Journal of Desert Research, 2023, 43(1): 150-159.]
doi: 10.7522/j.issn.1000-694X.2022.00116 |
|
[20] | Yu T F, Feng Q, Si J H, et al. Flooding constrains tree water use of a riparian forest in the lower Heihe River Basin, northwest China[J]. Science of the Total Environment, 2021, 760: 144069, doi: 10.1016/j.scitotenv.2020.144069. |
[21] | 张甘霖, 龚子同. 土壤调查实验室分析方法[M]. 北京: 科学出版社, 2011: 47-70. |
[Zhang Ganlin, Gong Zitong. Soil survey laboratory methods[M]. Beijing: Science Press, 2011: 47-70.] | |
[22] | 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 120-147. |
[Bao Shidan. Soil and agricultural chemistry analysis[M]. Beijing: China Agriculture Press, 2000: 120-147.] | |
[23] | 贡璐, 朱美玲, 刘曾媛, 等. 塔里木盆地南缘典型绿洲土壤有机碳、无机碳与环境因子的相关性[J]. 环境科学, 2016, 37(4): 1516-1522. |
[Gong Lu, Zhu Meiling, Liu Zengyuan, et al. Correlation among soil organic carbon, soil inorganic carbon and the environmental factors in a typical oasis in the southern edge of the Tarim Basin[J]. Environmental Science, 2016, 37(4): 1516-1522.] | |
[24] | 杨洋, 张心昱, 苏文, 等. 新疆农田和荒漠生态系统土壤有机碳储量及影响因素分析[J]. 生态学报, 2024, 44(14): 1-12. |
[Yang Yang, Zhang Xinyu, Su Wen, et al. Soil organic carbon storage and its influencing factors in farmland and desert ecosystems in Xinjiang[J]. Acta Ecologica Sinica, 2024, 44(14): 1-12.] | |
[25] | 侯浩, 张宋智, 关晋宏, 等. 小陇山不同林龄锐齿栎林土壤有机碳和全氮积累特征[J]. 生态学报, 2016, 36(24): 8025-8033. |
[Hou Hao, Zhang Songzhi, Guan Jinhong, et al. Accumulation of soil organic carbon and total nitrogen in Quercus aliena var. acuteserrata forests at different age stages in the Xiaolongshan Mountains, Gansu Province[J]. Acta Ecologica Sinica, 2016, 36(24): 8025-8033.] | |
[26] | 雒琼, 王玉刚, 邓彩云, 等. 干旱区土壤剖面无机碳分布及其与盐碱性的关系[J]. 水土保持学报, 2017, 31(5): 240-246. |
[Luo Qiong, Wang Yugang, Deng Caiyun, et al. Distribution of inorganic carbon in soil profile and its relationship with soil saline-alkali property in arid area[J]. Journal of Soil and Water Conservation, 2017, 31(5): 240-246.] | |
[27] | 张宇恒, 刘春, 付智勇, 等. 坡面水文过程与土壤有机碳迁移研究进展[J]. 土壤通报, 2023, 54(3): 730-738. |
[Zhang Yuheng, Liu Chun, Fu Zhiyong, et al. Research progress of hydrological process and soil organic carbon migration in slope field[J]. Chinese Journal of Soil Science, 2023, 54(3): 730-738.] | |
[28] | Zhou H, Gan F L, Dai Q H, et al. Migration of dissolved carbon on bare karst slopes in soil in response to natural rainfall events[J]. Geoderma, 2023, 436: 116527, doi: 10.1016/j.geoderma.2023.116527. |
[29] | Hassani A, Smith P, Shokri N. Negative correlation between soil salinity and soil organic carbon variability[J]. Proceedings of the National Academy of Sciences, 2024, 121(18): e2317332121, doi: 10.1073/pnas.2317332121. |
[30] | Yang R M, Yang F. Impacts of Spartina alterniflora invasion on soil inorganic carbon in coastal wetlands in China[J]. Soil Science Society of America Journal, 2020, 84(3): 844-855. |
[31] |
Huang P, Zhang J B, Xin X L, et al. Proton accumulation accelerated by heavy chemical nitrogen fertilization and its long-term impact on acidifying rate in a typical arable soil in the Huang-Huai-Hai Plain[J]. Journal of Integrative Agriculture, 2015, 14(1): 148-157.
doi: 10.1016/S2095-3119(14)60750-4 |
[32] | Harley A D, Gilkes R J. Factors influencing the release of plant nutrient elements from silicate rock powders: A geochemical overview[J]. Nutrient Cycling in Agroecosystems, 2000, 56: 11-36. |
[33] | Pan J X, Wang J S, Tian D S, et al. Biotic factors dominantly determine soil inorganic carbon stock across Tibetan alpine grasslands[J]. Soil, 2022, 8(2): 687-698. |
[34] | Gao Y, Dang P, Zhao Q X, et al. Effects of vegetation rehabilitation on soil organic and inorganic carbon stocks in the Mu Us Desert, northwest China[J]. Land Degradation & Development, 2018, 29(4): 1031-1040. |
[35] | de Nijs E A, Cammeraat E L. The stability and fate of soil organic carbon during the transport phase of soil erosion[J]. Earth-Science Reviews, 2020, 201: 103067, doi: 10.1016/j.earscirev.2019.103067. |
[36] | Tong L S, Fang N F, Xiao H B, et al. Sediment deposition changes the relationship between soil organic and inorganic carbon: Evidence from the Chinese Loess Plateau[J]. Agriculture, Ecosystems & Environment, 2020, 302: 107076, doi: 10.1016/j.agee.2020.107076. |
|