干旱区地理 ›› 2021, Vol. 44 ›› Issue (3): 612-619.doi: 10.12118/j.issn.1000–6060.2021.03.02
收稿日期:
2021-02-07
修回日期:
2021-03-14
出版日期:
2021-05-25
发布日期:
2021-06-01
作者简介:
陈亚鹏(1979-),男,河南,副研究员,主要从事植物水分关系研究. E-mail: 基金资助:
CHEN Yapeng(),ZHOU Honghua,ZHU Chenggang
Received:
2021-02-07
Revised:
2021-03-14
Online:
2021-05-25
Published:
2021-06-01
摘要:
胡杨是世界重要的林木基因资源,且具有重要的生态功能。以塔里木河下游为研究靶区,结合实地监测资料和文献阅读,对胡杨水分获取、传导和耗散等水分传输过程方面进行了综述和分析。成年胡杨主要利用地下水和深层土壤水,而幼苗由于类型和立地水土环境的不同,水分来源也不同。干旱环境下,胡杨叶片水分传输效率增加,但同时也伴随着水力失调风险的增加;成年胡杨通过下调木质部导水率减少水分蒸腾,而幼苗则通过提高导水能力以获取更多的水分。胡杨根系具有水力提升作用,提升的水量一般可为其蒸腾提供10%~39%的水量。胡杨液流通量密度一般在0.005~0.040 L·cm-2·h-1之间,且随着地下水埋深的增加而减小,胡杨林的年蒸散发量在296.7~750.0 mm之间。未来可加强胡杨根-茎-叶间水分传输互作机理的研究,进一步精确量化胡杨水分来源,将估算蒸散发的尺度扩展到胡杨林生态系统。
陈亚鹏,周洪华,朱成刚. 塔里木河下游胡杨水分传输过程研究综述[J]. 干旱区地理, 2021, 44(3): 612-619.
CHEN Yapeng,ZHOU Honghua,ZHU Chenggang. A review of water transport processes of Populus euphratica in the lower reaches of Tarim River[J]. Arid Land Geography, 2021, 44(3): 612-619.
[1] | 杨启良, 张富仓, 刘小刚, 等. 植物水分传输过程中的调控机制研究进展[J]. 生态学报, 2011,31(15):4427-4436. |
[ Yang Qiliang, Zhang Fucang, Liu Xiaogang, et al. Research progress on regulation mechanism for the process of water transport in plants[J]. Acta Eeologica Sinica, 2011,31(15):4427-4436. ] | |
[2] |
Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor[J]. Nature Biotechnology, 1999,17:287-291.
doi: 10.1038/7036 |
[3] |
Ma L, Sun X L, Kong X X, et al. Physiological, biochemical and proteomics analysis reveals the adaptation strategies of the alpine plant Potentilla saundersiana at altitude gradient of the northwestern Tibetan Plateau[J]. Journal of Proteomics, 2015,112:63-82.
doi: 10.1016/j.jprot.2014.08.009 |
[4] |
Nemani R R, Keeling C D, Hashimoto H, et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999[J]. Science, 2003,300:1560-1563.
doi: 10.1126/science.1082750 |
[5] |
Mencuccini M. The ecological significance of long-distance water transport: Short-term regulation and long-term acclimation across plant growth forms[J]. Plant, Cell and Environment, 2003,26(1):163-182.
doi: 10.1046/j.1365-3040.2003.00991.x |
[6] | 王世绩. 全球胡杨林的现状及保护和恢复对策[J]. 世界林业研究, 1996,6:37-44. |
[ Wang Shiji. The status, conservation and recovery of global resources of Populus euphradica[J]. World Forestry Research, 1996,6:37-44. ] | |
[7] | Chen Y N, Chen Y P, Li W H, et al. Response of the accumulation of proline in the bodies of Populus euphratica to the change of ground water level at the lower reaches of Tarim River[J]. Chinese Science Bulletin, 2003,48(18):1995-1999. |
[8] |
Thevs N, Zerbe S, Schnittler M, et al. Structure, reproduction and flood-induced dynamics of riparian Tugai forests at the Tarim River in Xinjiang, NW China[J]. Forestry, 2008,81(1):45-57.
doi: 10.1093/forestry/cpm043 |
[9] | Gries D, Zeng F J, Foetzki A, et al. Growth and water relations of Tamarix ramosissima and Populus euphratica on Taklamakan desert dunes in relation to depth to a permanent water table[J]. Plant Cell & Environment, 2003,26:725-736. |
[10] |
Zhu C G, Li W H, Chen Y N, et al. Characteristics of water physiological integration and its ecological significance for Populus euphratica young ramets in an extremely drought environment[J]. Journal of Geophysical Research: Atmospheres, 2018,123:5657-5666.
doi: 10.1029/2018JD028396 |
[11] | Lin G H, Sternberg L. Utilization of surface water by red mangrove (Rhizophora mangle L.): An isotopic study[J]. Bulletin of Marine Science, 1994,54(1):94-102. |
[12] | 周天河, 赵成义, 吴桂林, 等. 塔里木河上游胡杨(Populus euphratica)、柽柳(Tamarix ramosissima)水分来源的稳定同位素示踪[J]. 中国沙漠, 2017,37(1):127-134. |
[ Zhou Tianhe, Zhao Chenyi, Wu Guilin, et al. Application of stable isotopes in analyzing the water sources of Populus euphratica and Tamarix ramosissima in the upstream of Tarim River[J]. Journal of Desert Research, 2017,37(1):127-134. ] | |
[13] |
Chen Y P, Chen Y N, Xu C C, et al. The effects of groundwater depth on water uptake of Populus euphratica and Tamarix ramosissima in the hyperarid region of northwestern China[J]. Environmental Science and Pollution Research, 2016,23(17):17404-17412.
doi: 10.1007/s11356-016-6914-8 |
[14] | 唐敏, 张峰, 师庆东. 克里雅河尾闾绿洲浅层地下水位埋深变化特征研究[J]. 干旱区地理, 2021,44(1):80-88. |
[ Tang Min, Zhang Feng, Shi Qingdong. Variations in groundwater table depth at Daliyaboyi Oasis, Keriya River, China[J]. Arid Land Geography, 2021,44(1):80-88. ] | |
[15] | 王勇, 赵成义, 王丹丹, 等. 塔里木河流域不同林龄胡杨与柽柳的水分利用策略研究[J]. 水土保持学报, 2017,31(6):157-163. |
[ Wang Yong, Zhao Chengyi, Wang Dandan, et al. Water use strategies of Populus euphratica and Tamarix ramosissima at different ages in Tarim River Basin[J]. Journal of Soil and Water Conservation, 2017,31(6):157-163. ] | |
[16] |
张江, 李桂芳, 贺亚玲, 等. 基于稳定同位素技术的塔里木河下游不同林龄胡杨的水分利用来源[J]. 生物多样性, 2018,26(6):564-571.
doi: 10.17520/biods.2017342 |
[ Zhang Jiang, Li Guifang, He Yaling, et al. Water utilization sources of Populus euphratica trees of different ages in the lower reaches of Tarim River[J]. Biodiversity Science, 2018,26(6):564-571. ]
doi: 10.17520/biods.2017342 |
|
[17] | 王玉阳, 陈亚鹏, 李卫红, 等. 塔里木河下游典型荒漠河岸植物水分来源[J]. 中国沙漠, 2017,37(6):1150-1157. |
[ Wang Yuyang, Chen Yapeng, Li Weihong, et al. Water sources of typical desert riparian plants in the lower reaches of Tarim River[J]. Journal of Desert Research, 2017,37(6):1150-1157. ] | |
[18] | 邢星, 陈辉, 朱建佳, 等. 柴达木盆地诺木洪地区5种优势荒漠植物水分来源[J]. 生态学报, 2014,4(21):6277-6286. |
[ Xing Xing, Chen Hui, Zhu Jianjia, et al. Water sources of five dominant desert plant species in Nuomuhong area of Qaidam Basin[J]. Acta Ecologica Sinica, 2014,34(21):6277-6286. ] | |
[19] |
Dai Y, Zheng X J, Tang L S, et al. Stable oxygen isotopes reveal distinct water use patterns of two Haloxylon species in the Gurbantonggut Desert[J]. Plant and Soil, 2015,389:73-87.
doi: 10.1007/s11104-014-2342-z |
[20] |
Smith S D, Wellington A B, Nachlinger J L, et al. Functional responses of riparian vegetation to streamflow diversion in the eastern Sierra Nevada[J]. Ecological Applications, 1991,1(1):89-97.
doi: 10.2307/1941850 |
[21] |
Nippert J B Butler Jr J J Kluitenberg G J, et al. Patterns of Tamarix water use during a record drought[J]. Oecologia, 2010,162:283-292.
doi: 10.1007/s00442-009-1455-1 pmid: 19756759 |
[22] |
Lier Q de J van, Metselaar K, Dam J C van. Root water extraction and limiting soil hydraulic conditions estimated by numerical simulation[J]. Vadose Zone Journal, 2006,5(4):1264-1277.
doi: 10.2136/vzj2006.0056 |
[23] |
Peters A. Modified conceptual model for compensated root water uptake: A simulation study[J]. Journal of Hydrology, 2016,534:1-10.
doi: 10.1016/j.jhydrol.2015.12.047 |
[24] |
Zhu Y H, Ren L L, Skaggs T H, et al. Simulation of Populus euphratica root uptake of groundwater in an arid woodland of the Ejina Basin, China[J]. Hydrological Processes, 2009,23:2460-2469.
doi: 10.1002/hyp.v23:17 |
[25] | Laio F, Tamea S, Ridolfi L, et al. Ecohydrology of groundwater-dependent ecosystems: 1. Stochastic water table dynamics[J]. Water Resources Research, 2009,45(5):207-213. |
[26] |
Rothfuss Y, Javaux M. Reviews and syntheses: Isotopic approaches to quantify root water uptake: A review and comparison of methods[J]. Biogeosciences, 2017,14:2199-2224.
doi: 10.5194/bg-14-2199-2017 |
[27] | 陈晓林. 胡杨水分选择性利用的定量分析[D]. 北京: 中国科学院大学, 2018. |
[ Chen Xiaolin. Quantitative analysis of water selective utilization of Populus euphratica[D]. Beijing: University of Chinese Academy of Sciences, 2018. ] | |
[28] |
Sack L, Holbrook N M. Leaf hydraulics[J]. Annual Review of Plant Biology, 2006,57:361-381.
doi: 10.1146/annurev.arplant.56.032604.144141 |
[29] | 王日照, 陈亚鹏, 陈亚宁, 等. 地下水埋深对胡杨(Populus euphratica)叶片形态结构和水力导度的影响[J]. 中国沙漠, 2016,36(5):1302-1307. |
[ Wang Rizhao, Chen Yapeng, Chen Yaning, et al. Effects of groundwater level on morphological, anatomical structure and leaf hydraulic conductance of Populus euphratica[J]. Journal of Desert Research, 2016,36(5):1302-1307. ] | |
[30] |
Nardini A, Pedà G, Rocca N L. Trade-offs between leaf hydraulic capacity and drought vulnerability: Morpho-anatomical bases, carbon costs and ecological consequences[J]. New Phytologist, 2012,196:788-798.
doi: 10.1111/nph.2012.196.issue-3 |
[31] | Blackman C J, Brodribb T J, Jordan G J. Leaf hydraulics and drought stress: Response, recovery and survivorship in four woody temperate plant species[J]. Plant, Cell & Environment, 2009,32:1584-1595. |
[32] |
Pockman W T, Sperry J S. Vulnerability to xylem cavitation and the distribution of Sonoran Desert vegetation[J]. American Journal of Botany, 2000,87(9):1287-1299.
doi: 10.2307/2656722 |
[33] |
Pan Y P, Chen Y P, Chen Y N, et al. Impact of groundwater depth on leaf hydraulic properties and drought vulnerability of Populus euphratica in the northwest of China[J]. Trees, 2016,30(6):2029-2039.
doi: 10.1007/s00468-016-1430-5 |
[34] | 徐茜, 陈亚宁. 胡杨茎木质部解剖结构与水力特性对干旱胁迫处理的响应[J]. 中国生态农业学报, 2012,20(8):1059-1065. |
[ Xu Qian, Chen Yaning. Response of anatomy and hydraulic characteristics of xylem stem of Populus euphratica Oliv. to drought stress[J]. Chinese Journal of Eco-Agriculture, 2012,20(8):1059-1065. ] | |
[35] |
Zhou H H, Chen Y N, Li W H, et al. Xylem hydraulic conductivity and embolism in riparian plants and their responses to drought stress in desert of northwest China[J]. Ecohydrology, 2013,6(6):984-993.
doi: 10.1002/eco.v6.6 |
[36] | 木巴热克·阿尤普, 陈亚宁, 郝兴明, 等. 极端干旱环境下的胡杨木质部水力特征[J]. 生态学报, 2012,32(9):2748-2758. |
[ Ayoupu Mubareke, Chen Yaning, Hao Xingming, et al. Xylem hydraulic traits of Populus euphratica Oliv. in extremely drought environment[J]. Acta Ecologica Sinica, 2012,32(9):2748-2758. ] | |
[37] |
周洪华, 李卫红. 胡杨木质部水分传导对盐胁迫的响应与适应[J]. 植物生态学报, 2015,39(1):81-91.
doi: 10.17521/cjpe.2015.0009 |
[ Zhou Honghua, LI Weihong. Responses and adaptation of xylem hydraulic conductivity to salt stress in Populus euphratica[J]. Chinese Journal of Plant Ecology, 2015,39(1):81-91. ]
doi: 10.17521/cjpe.2015.0009 |
|
[38] | Yu T F, Feng Q, Si J H, et al. Depressed hydraulic redistribution of roots more by stem refilling than by nocturnal transpiration for Populus euphratica Oliv. in situ measurement[J]. Ecology & Evolution, 2018,8(5):2607-2616. |
[39] | 苏芮, 李卫红, 郝兴明, 等. 荒漠河岸林地区胡杨幼苗根系水力提升作用探究[J]. 干旱区研究, 2012,29(2):342-346. |
[ Su Rui, Li Weihong, Hao Xingming, et al. Research on hydraulic lifting of Populus euphratica seedling roots in desert riparian forest area[J]. Arid Zone Research, 2012,29(2):342-346. ] | |
[40] |
Hao X M, Chen Y N, Guo B, et al. Hydraulic redistribution of soil water in Populus euphratica Oliv. in a Central Asian desert riparian forest[J]. Ecohydrology, 2013,6(6):974-983.
doi: 10.1002/eco.v6.6 |
[41] |
Hao X M, Li Y, Deng H J. Assessment of hydraulic redistribution on desert riparian forests in an extremely arid area[J]. Environmental Monitoring and Assessment, 2013,185(12):10027-10038.
doi: 10.1007/s10661-013-3310-4 |
[42] | 鱼腾飞, 冯起, 司建华, 等. 胡杨根系水力再分配的模式、大小及其影响因子[J]. 北京林业大学学报, 2014,36(2):22-29. |
[ Yu Tengfei, Feng Qi, Si Jianhua, et al. Patterns, magnitude and controlling factors of hydraulic redistribution by Populus euphratica roots[J]. Journal of Beijing Forestry University, 2014,36(2):22-29. ] | |
[43] |
Neumann R B, Cardon Z G. The magnitude of hydraulic redistribution by plant roots: A review and synjournal of empirical and modeling studies[J]. New Phytologist, 2012,194(2):337-352.
doi: 10.1111/nph.2012.194.issue-2 |
[44] |
Yang X D, Zhang X N, Lü G H, et al. Linking Populus euphratica hydraulic redistribution to diversity assembly in the arid desert zone of Xinjiang, China[J]. PLoS One, 2014,9(10):e109071, doi: 10.1371/journal.pone.0109071.
doi: 10.1371/journal.pone.0109071 |
[45] |
Chen Y P, Chen Y N, Li W H, et al. Characterization of photosynjournal of Populus euphratica grown in the arid region[J]. Photosynthetica, 2006,44(4):622-626.
doi: 10.1007/s11099-006-0081-y |
[46] | 陈亚鹏, 陈亚宁, 李卫红, 等. 干旱环境下高温对胡杨光合作用的影响[J]. 中国沙漠, 2009,29(3):474-479. |
[ Chen Yapeng, Chen Yaning, Li Weihong, et al. Effect of high temperature on photosynjournal in Populus euphratica under drought condition[J]. Journal of Desert Research, 2009,29(3):474-479. ] | |
[47] |
Chen Y P, Chen Y N, Li W H, et al. Groundwater depth affects the daily course of gas exchange parameters of Populus euphratica in arid areas[J]. Environmental Earth Sciences, 2012,66(2):433-440.
doi: 10.1007/s12665-011-1250-2 |
[48] | 杨永青, 蒋湘宁. 干旱胁迫下胡杨生理适应机制的研究[J]. 北京林业大学学报, 2006(S2):6-11. |
[ Yang yongqing, Jiang Xiangning. Physiological adapting mechanism of Populus euphratica under drought stress[J]. Journal of Beijing Forestry University, 2006, (S2):6-11. ] | |
[49] | 周孝明, 陈亚宁, 李卫红, 等. 塔里木河下游胡杨树干液流特征研究[J]. 中国沙漠, 2008,28(4):673-678. |
[ Zhou Xiaoming, Chen Yaning, Li Weihong, et al. Study of sap flow in stem of Populus euphratica in lower reaches of Tarim River[J]. Journal of Desert Research, 2008,28(4):673-678. ] | |
[50] | 赵春彦, 司建华, 冯起, 等. 胡杨(Populus euphratica)树干液流特征及其与环境因子的关系[J]. 中国沙漠, 2014,34(3):718-724. |
[ Zhao Chunyan, Si Jianhua, Feng Qi, et al. Xylem sap flow of Populus euphratica in relation to environmental factors in the lower reaches of Heihe River[J]. Journal of Desert Research, 2014,34(3):718-724. ] | |
[51] |
Chen Y N, Li W H, Zhou H H, et al. Experimental study on water transport observations of desert riparian forests in the lower reaches of the Tarim River in China[J]. International Journal of Biometeorology, 2017,61:1055-1062.
doi: 10.1007/s00484-016-1285-x |
[52] | 何斌, 陈亚宁, 李卫红, 等. 塔里木河下游地区胡杨蒸腾耗水规律及其对生态输水的响应[J]. 资源科学, 2009,31(9):1545-1552. |
[ He Bin, Chen Yaning, Li Weihong, et al. Analysis of the variation of transpiration of Populus euphratica and its response to ecological water supply at the lower reaches of Tarim River[J]. Resources Science, 2009,31(9):1545-1552. ] | |
[53] |
马建新, 陈亚宁, 李卫红, 等. 胡杨液流对地下水埋深变化的响应[J]. 植物生态学报, 2010,34(8):915-923.
doi: 10.3773/j.issn.1005-264x.2010.08.004 |
[ Ma Jianxin, Chen Yaning, Li Weihong, et al. Response of sap flow in Populus euphratica to changes in groundwater depth in the middle and lower reaches of the Tarim River of northwestern China[J]. Chinese Journal of Plant Ecology, 2010,34(8):915-923. ]
doi: 10.3773/j.issn.1005-264x.2010.08.004 |
|
[54] | 司建华, 冯起, 张小由, 等. 极端干旱区荒漠河岸林胡杨生长季树干液流变化[J]. 中国沙漠, 2007,27(3):442-447. |
[ Si Jianhua, Fen Qi, Zhang Xiaoyou, et al. Sap flow of populus euphratica in desert riparian forest in extreme arid region during the growing season[J]. Journal of Desert Research, 2007,27(3):442-447. ] | |
[55] | 买尔当·克依木, 玉米提·哈力克, 古丽比亚·乌买尔, 等. 胡杨树干液流日变化及其与气象因素的相关关系[J]. 冰川冻土, 2018,40(1):166-175. |
[ Maierdang Keyimu, Umüt Halik, Gulibiya Wumaier, et al. Diel variation of Populus euphratica sap flow and its correlation with meteorological factors[J]. Journal of Glaciology and Geocryology, 2018,40(1):166-175. ] | |
[56] |
Yuan G F, Luo Y, Shao M A. et al. Evapotranspiration and its main controlling mechanism over the desert riparian forests in the lower Tarim River Basin[J]. Science China Earth Sciences, 2015,58:1032-1042.
doi: 10.1007/s11430-014-5045-7 |
[57] | 孙海涛, 陈亚鹏, 陈亚宁, 等. 塔里木河下游荒漠河岸林地下水蒸散发[J]. 干旱区研究, 2020,37(1):116-125. |
[ Sun Haitao, Chen Yapeng, Chen Yaning, et al. Groundwater evapotranspiration in desert riparian forest in the lower reaches of the Tarim River[J]. Arid Zone Research, 2020,37(1):116-125. ] | |
[58] | 张经天, 席海洋, 王春林, 等. 基于地下水位变化的荒漠河岸林蒸散估算[J]. 高原气象, 2019,38(1):179-186. |
[ Zhang Jingtian, Xi Haiyang, Wang Chunlin, et al. Estimation of evapotranspiration of riparian forests in the desert region from diurnal fluctuation of groundwater levels[J]. Plateau Meteorology, 2019,38(1):179-186. ] | |
[59] |
Wang P, Grinevsky S O, Pozdniakov S P, et al. Application of the water table fluctuation method for estimating evapotranspiration at two phreatophyte-dominated sites under hyper-arid environments[J]. Journal of Hydrology, 2014,519:2289-2300.
doi: 10.1016/j.jhydrol.2014.09.087 |
[60] | 陈亚宁, 李卫红, 陈亚鹏, 等. 荒漠河岸林建群植物的水分利用过程分析[J]. 干旱区研究, 2018,35(1):130-136. |
[ Chen Yaning, Li Weihong, Chen Yapeng, et al. water use process of constructive plants in desert riparian forest[J]. Arid Zone Research, 2018,35(1):130-136. ] | |
[61] | 朱绪超, 袁国富, 唐新斋, 等. 一个新的荒漠河岸林需水量估算方法及其在塔里木河下游的应用[J]. 干旱区地理, 2016,39(2):368-377. |
[ Zhu Xuchao, Yuan Guofu, Tang Xinzhai, et al. A new method for estimating water requirement of desert riparian forests and its application in the lower reaches of Tarim River[J]. Arid Land Geography, 2016,39(2):368-377. ] | |
[62] |
Gao G L, Zhang X Y, Yu T F, et al. Comparison of three evapotranspiration models with eddy covariance measurements for a Populus euphratica Oliv. forest in an arid region of northwestern China[J]. Journal of Arid Land, 2016,8(1):146-156.
doi: 10.1007/s40333-015-0017-0 |
[63] | 高冠龙, 冯起, 刘贤德. 基于改进的双源模型模拟荒漠河岸胡杨林蒸散发[J]. 生态学报, 2020,40(10):3462-3472. |
[ Gao Guanlong, Feng Qi, Liu Xiande. Simulating evapotranspiration of the desert riparian Populus euphratica Olive. forest based on an improved dual-source model[J]. Acta Ecologica Sinica, 2020,40(10):3462-3472. ] | |
[64] | 苏里坦, 王兴勇, 赵天宇. 地下变水位条件下塔里木河下游河岸胡杨林蒸腾模型[J]. 干旱区地理, 2014,37(5):916-921. |
[ Sulitan, Wang Xingyong, Zhao Tianyu, et al. Transpiration model of Populous euphratica in the lower reaches of Tarim River under groundwater fluctuation[J]. Arid Land Geography, 2014,37(5):916-921. ] | |
[65] | 苏里坦, 关东海, 王兴勇, 等. 塔里木河下游胡杨林耗水数值模型[J]. 水科学进展, 2014,25(4):511-517. |
[ Sulitan, Guan Donghai Wang Xingyong, et al. Numerical model of water consumption of Populus euphratica in the lower reaches of Tarim River[J]. Advances in Water Science, 2014,25(4):511-517. ] | |
[66] |
Yuan G F, Zhu X C, Tang X Z, et al. A species-specific and spatially-explicit model for estimating vegetation water requirements in desert riparian forest zones[J]. Water Resources Management, 2016,30:3915-3933.
doi: 10.1007/s11269-016-1398-3 |
[1] | 卢冬燕, 朱秀芳, 刘婷婷, 张世喆. 2 ℃温升情景下中国气象干旱特征变化[J]. 干旱区地理, 2023, 46(8): 1227-1237. |
[2] | 成硕, 李艳忠, 星寅聪, 于志国, 王渊刚, 黄曼捷. 遥感降水产品对黄河源区水文干旱特征的模拟性能分析[J]. 干旱区地理, 2023, 46(7): 1063-1072. |
[3] | 史继清, 甘臣龙, 周刊社, 袁雷, 张东东. 西藏青稞主要种植区干旱时空分布及致灾危险性评估[J]. 干旱区地理, 2023, 46(7): 1098-1110. |
[4] | 姚岚博, 冶建明, 王芸, 朱现伟. 干旱区人居环境系统耦合协调的时空演变及作用机制研究——以新疆为例[J]. 干旱区地理, 2023, 46(6): 1013-1023. |
[5] | 王嘉年, 李向义, 李成道, 张爱林, 林丽莎. 自然光照和荫蔽条件下两种荒漠植物叶片凋落物分解特征研究[J]. 干旱区地理, 2023, 46(6): 949-957. |
[6] | 罗镕基, 王宏涛, 王成. 基于改进遥感生态指数的甘肃省古浪县生态质量评价[J]. 干旱区地理, 2023, 46(4): 539-549. |
[7] | 许昕彤,朱丽,吕潇雨,郭浩. MSWEP降水产品在黄河流域气象干旱监测中的适用性评价[J]. 干旱区地理, 2023, 46(3): 371-384. |
[8] | 孙南沙,陈琼,刘峰贵,周强,郭媛媛. 2000—2020年河湟谷地农业干旱研究[J]. 干旱区地理, 2023, 46(3): 437-447. |
[9] | 肖东升,王宁,刘志成. 干旱地区“代表性人口格网数据集”精度研究——以甘宁青地区为例[J]. 干旱区地理, 2023, 46(3): 505-514. |
[10] | 曹玉娟, 司文洋, 杜自强, 梁寒雪, 雷添杰, 孙斌, 武志涛. 1982—2017年典型干旱年的中国GPP变化[J]. 干旱区地理, 2023, 46(10): 1577-1590. |
[11] | 张娟, 姚晓军, 李净, 王晓燕. 基于多源遥感数据的甘肃省农业干旱研究[J]. 干旱区地理, 2023, 46(1): 11-22. |
[12] | 韩大勇, 牛忠泽, 伍永明, 高健. 水热条件共同驱动新疆湿地植物丰富度空间分布格局[J]. 干旱区地理, 2023, 46(1): 86-93. |
[13] | 王振, 李均力, 张久丹, 吴浩儒, 郭雪飞. 输水漫溢对塔里木河中游胡杨林恢复的影响[J]. 干旱区地理, 2023, 46(1): 94-102. |
[14] | 琚立, 冉敏, 杨运鹏, 王馨. 塔里木盆地西南缘表土碳同位素组成特征分析[J]. 干旱区地理, 2022, 45(6): 1805-1813. |
[15] | 张力斌, 何明珠, 张克存, 安志山, 王金国, 惠迎新, 贾小龙. 干旱风沙区植被重建初期对土壤微生物群落结构的影响[J]. 干旱区地理, 2022, 45(6): 1916-1926. |
|