收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2023, Vol. 46 ›› Issue (2): 211-221.doi: 10.12118/j.issn.1000-6060.2022.214

• 气候与环境变化 • 上一篇    下一篇

1980—2020年渭河流域高温热浪时空变化特征

邓甜甜(),耿广坡(),杨睿,张保   

  1. 西安科技大学测绘科学与技术学院,陕西 西安 710054
  • 收稿日期:2022-05-11 修回日期:2022-06-08 出版日期:2023-02-25 发布日期:2023-03-14
  • 通讯作者: 耿广坡(1986-),男,副教授,主要从事自然灾害监测和风险评估研究等方面的研究. E-mail: gengguangpo@xust.edu.cn
  • 作者简介:邓甜甜(1997-),女,硕士研究生,主要从事高温干旱监测及其影响评价等方面的研究. E-mail: dengt_t@163.com
  • 基金资助:
    国家自然科学基金项目(41807503);陕西省教育厅科研计划项目(21JK0771);西安科技大学博士启动金项目(2017QDJ030);陕西省软科学研究计划(2022KRM034)

Temporal and spatial variation characteristics of high temperature and heat wave in the Weihe River Basin from 1980 to 2020

DENG Tiantian(),GENG Guangpo(),YANG Rui,ZHANG Bao   

  1. College of Surveying and Mapping Science and Technology, Xi’an University of Science and Technology, Xi’an 710054, Shaanxi, China
  • Received:2022-05-11 Revised:2022-06-08 Online:2023-02-25 Published:2023-03-14

摘要:

基于1980—2020年渭河流域24个气象站点逐日最高气温数据,利用Sen+Mann-Kendall趋势分析方法,研究了渭河流域近40 a来高温热浪的时空变化特征。结果表明:(1) 渭河流域高温日数多年平均值为3.54 d,且以约1 d·(10a)-1的速率呈极显著增加趋势,渭河流域年均高温日数呈现西北少、东南多的空间分布特征,以关中平原站点高温日数增加趋势最为显著。(2) 高温初日最早时间在4月下旬,高温终日最晚时间在9月上旬,渭河流域大部分站点高温初日呈显著性提前,提前天数约3~5 d·(10a)-1,接近一半的站点高温终日呈显著性推迟,推迟天数约3 d·(10a)-1,说明渭河流域受到高温影响的总时间变长了。(3) 渭河流域重度高温热浪发生次数占比为10.32%,说明每10次事件中至少有1次是重度高温热浪,不同等级高温热浪频次较高的站点和持续时间较长的站点都位于渭河流域东南部的关中平原,说明关中平原是渭河流域高温热浪的重心。(4) 不同时段高温热浪强度整体呈显著上升趋势,未来强度可能还会进一步加剧,这对渭河流域人类健康和工农业生产等造成严重威胁,需要引起相关部门足够重视。研究结果可为渭河流域减轻高温热浪灾害提供参考。

关键词: 高温热浪, 趋势分析, 时空变化, 强度, 渭河流域

Abstract:

Based on the 1980 to 2020 daily maximum temperature data of 24 meteorological stations, this study uses the Sen+Mann-Kendall trend analysis method to investigate the spatial-temporal characteristics of high temperature and heat wave in the Weihe River Basin, northwest China in the past 40 years. The multi-year average of the high temperature days in the Weihe River Basin was 3.54 days, showing an extremely significant increase trend at a 1 d·(10a)-1 rate. The stations in this basin presented spatial distributions of less in the northwest and more in the southeast. The increasing trend of high temperature days in Guanzhong Plain was the most significant. The first day of high temperature was in late April, while the last day was in early September. The first day at most stations in the Weihe River Basin was significantly advanced by approximately 3-5 d·(10a)-1, while the last day of nearly half of the stations was significantly delayed by approximately 3 d·(10a)-1. These results indicate that the total time affected by the high temperature in the Weihe River Basin became longer. Next, the occurrence of severe high temperature and heat wave accounted for 10.32%, suggesting that at least one of every 10 incidents was a severe high temperature and heat wave. Stations with a higher frequency and a longer duration of high temperature and heat wave of different levels were distributed in Guanzhong Plain, indicating that the plain was the main part of the high temperature and heat wave in Weihe River Basin. The high temperature and heat wave intensity in different periods showed a significant upward trend as a whole, suggesting that the intensity may increase in the future. However, this will pose a serious threat to human health and to the industrial and agricultural production in the basin, requiring adequate attention from relevant departments. This study could provide a reference for mitigating the high-temperature and heat wave disaster in the Weihe River Basin.

Key words: high temperature and heat wave, trend analysis, temporal and spatial variation, intensity, Weihe River Basin