收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2025, Vol. 48 ›› Issue (11): 2031-2041.doi: 10.12118/j.issn.1000-6060.2025.181 cstr: 32274.14.ALG2025181

• 旅游地理 • 上一篇    下一篇

黄河流域乡村旅游重点村空间分布及影响因素

李珂(), 何静(), 孟阳阳, 李昌睿   

  1. 河南农业大学林学院,河南 郑州 450046
  • 收稿日期:2025-04-07 修回日期:2025-06-13 出版日期:2025-11-25 发布日期:2025-11-26
  • 通讯作者: 何静(1982-),女,硕士,副教授,主要从事乡村旅游、旅游资源保护与开发研究. E-mail: hejing@henau.edu.cn
  • 作者简介:李珂(1994-),女,硕士研究生,主要从事乡村旅游研究. E-mail: likelikejune@163.com
  • 基金资助:
    国家自然科学基金项目(42401362);河南省哲学社会科学规划课题(2023BJJ039);河南省教育科学规划重点课题(2025JKZD14)

Spatial distribution and influencing factors of key rural tourism villages in the Yellow River Basin

LI Ke(), HE Jing(), MENG Yangyang, LI Changrui   

  1. College of Forestry, Henan Agricultural University, Zhengzhou 450046, Henan, China
  • Received:2025-04-07 Revised:2025-06-13 Published:2025-11-25 Online:2025-11-26

摘要: 乡村旅游重点村的空间分异格局及其影响因素分析对黄河流域统筹推进乡村振兴战略实施、保障流域生态屏障功能及活化地域文化遗产具有重要战略意义。运用空间分析法对2023年黄河流域9省区65个市域内的244个国家级乡村旅游重点村展开空间分异特征的定量解析,并融合随机森林回归模型与地理探测器方法,揭示其空间集聚模式及影响因素。结果表明:(1)黄河流域乡村旅游重点村在空间上具有显著集聚性与不均衡性,整体呈“多核集聚-带状延伸”空间分布格局。(2)随机森林回归模型与地理探测器分析显示,距省会城市距离、非物质文化遗产数量及高程是影响乡村旅游重点村空间分异的关键驱动因子,体现出“区位-资源-自然”协同作用的主导驱动机制。(3)因子交互作用探测显示,路网密度、城镇化率与其他因素的交互作用是影响乡村旅游重点村空间分异的主导因素组合,距省会城市距离与年平均降水量的交互效应呈现出最高空间解释力,揭示重点村流域分异与开发矛盾并存。

关键词: 乡村旅游, 随机森林, 地理探测器, 空间分布, 黄河流域

Abstract:

The analysis of the spatial distribution and influencing factors of key rural tourism villages in the Yellow River Basin of China is of significant strategic importance for the coordinated implementation of the rural revitalization strategy, the safeguarding of the basin’s ecological barrier function, and the activation of regional cultural heritage in the basin. Using spatial analysis, this study quantitatively analyzed the spatial distribution of 244 national key rural tourism villages across nine provinces/autonomous regions and 65 cities in the Yellow River Basin in 2023. Integrating the random forest regression model and geodetector, this study systematically reveals their spatial distribution and influencing factors. The findings reveal the following. (1) Key rural tourism villages in the Yellow River Basin exhibit significant spatial agglomeration and imbalance, forming a distribution pattern of a multi-core clustering with belt-shaped extension. (2) Random forest regression and geodetector analyses show that the distance from provincial capital cities, amount of intangible cultural heritages, and elevation are key driving factors that affect the spatial differentiation of key rural tourism villages, reflecting the dominant driving mechanism of location-resource-nature synergy. (3) Factor interaction detection shows that the interaction between road network density, urbanization rate, and other factors forms the dominant factor combination that affects the spatial differentiation between key rural tourism villages. The interaction effect between distance from provincial capital cities and annual average precipitation provides the highest spatial explanatory power, revealing the coexistence of basin differentiation and the development contradictions among key villages.

Key words: rural tourism, random forest, geographical detector, spatial distribution, Yellow River Basin