干旱区地理 ›› 2024, Vol. 47 ›› Issue (9): 1566-1576.doi: 10.12118/j.issn.1000-6060.2023.717 cstr: 32274.14.ALG2023717
收稿日期:
2023-12-19
修回日期:
2024-01-26
出版日期:
2024-09-25
发布日期:
2024-09-24
通讯作者:
占车生(1975-),男,博士,研究员,主要从事水文水资源研究. E-mail: zhancs@igsnrr.ac.cn作者简介:
蒙慧敏(1997-),女,博士研究生,主要从事水盐运移模拟研究. E-mail: mhm2019@163.com
基金资助:
MENG Huimin1,2(), ZHAN Chesheng1(), HU Shi1, LIN Zhonghui1
Received:
2023-12-19
Revised:
2024-01-26
Published:
2024-09-25
Online:
2024-09-24
摘要:
土壤盐渍化是一种由自然和人类活动综合作用引起的土地退化现象,灌区人类活动频繁,影响土壤盐渍化的因素多样,深入理解土壤水盐运移过程将有助于灌区的土壤盐渍化防治。在对灌区土壤水盐运移的影响因素、国内外水盐模型特点和应用研究梳理的基础上,提出了灌区水盐运移模拟的可能发展方向。灌区盐渍化的形成与气候干旱、地形、土壤季节性冻融、地下水含盐量和成土母质等自然因素,以及不合理的灌溉管理措施、耕作方式和施肥制度等人为因素密切相关。水盐运移模型是研究土壤水盐运移过程的有效工具,目前常用的水盐运移模型包括水盐平衡模型、物理模型和统计模型。由于模型率定和验证所需的土壤水盐运移过程、作物生长过程观测资料较难获取,水盐运移模型多用于田间尺度的节水控盐策略和灌排管理措施优化研究,在区域应用较为有限。现代大型灌区的快速发展导致灌区土壤水盐运移时空分布规律变化较大,对模型的不断改进以及计算机技术的快速发展为探究大型灌区水盐运移时空演变机制提供了可能性。未来应加强基于生态安全的灌区土壤水盐运移机制研究,构建耦合气候模式或经济模型的多过程水盐运移模型。
蒙慧敏, 占车生, 胡实, 林忠辉. 大型灌区土壤水盐运移模拟研究进展[J]. 干旱区地理, 2024, 47(9): 1566-1576.
MENG Huimin, ZHAN Chesheng, HU Shi, LIN Zhonghui. Research progress on simulation of soil water-salt transport in large-scale irrigation districts[J]. Arid Land Geography, 2024, 47(9): 1566-1576.
表1
常用的土壤水盐运移模型比较"
模型名称 | 类型 | 尺度 | 优点 | 缺点 |
---|---|---|---|---|
HYDRUS | 物理模型 | 田间 | 能较好刻画不同介质中水与溶质的迁移转化过程 | 局限于田间或对室内土柱的模拟应用 |
SHAW | 物理模型 | 田间 | 能够模拟冻融期土壤水盐运移过程 | 土壤盐分的模拟效果较差 |
SWAP | 物理模型 | 田间 | 能够考虑饱和-非饱和带水盐运移情况和水盐胁迫对作物生长的影响 | 不能定量描述空间变异性复杂的土壤水盐动态 |
UNSATCHEM | 物理模型 | 田间 | 能够模拟变饱和度的土壤水流和盐分 运移过程 | 模型参数较多,忽略了土壤大孔隙中的优先流流动、滞后现象 |
LEACHC | 物理模型 | 田间 | 能够模拟预测土壤层主要离子浓度、pH值、钠吸附比等 | 忽略了植物对肥料和溶质的吸收过程,可能影响土壤溶液中离子的化学平衡和反应 |
COMSOL | 物理模型 | 田间 | 能够较好地模拟土壤中主要盐离子的动态变化过程 | 未考虑土壤中碳酸钙的沉淀溶解过程 |
DRAINMOD | 水盐平衡模型 | 田间 | 能够描述农田盐分输出及盐分累积过程,计算简便 | 不能模拟作物对浅层地下水利用时造成的盐分累积过程 |
BP神经网络 | 统计模型 | 区域 | 具有良好的非线性映射能力 | 需要大量的实测数据 |
模糊神经网络模型(FNN) | 统计模型 | 区域 | 模型模拟预测精度较高 | 模型的自我调整能力和适应能力较差 |
自组织径向基函数(RBF) | 统计模型 | 区域 | 非线性逼近能力强 | 模型训练时间较长、结构较复杂 |
快速反向传播网络模型(FBP) | 统计模型 | 区域 | 模型训练速度快,结构较简单 | 模型容易陷入局部最优解,在处理非线性问题时可能受限 |
SaltMod | 水盐平衡模型 | 区域 | 模型参数少 | 不能模拟不同灌溉水质及井渠结合灌溉情景,不适合短期盐分预测 |
SahysMod | 水盐平衡模型 | 区域 | 综合SaltMod和SGMP模型优势,考虑了土壤空间变异性和种植制度的不同引起的灌溉与排水的差异性 | 未考虑植物体吸盐量,不适合短 期盐分预测 |
SWAT | 物理模型 | 流域 | 能够模拟流域内主要盐离子的运移过程 | 不能模拟基于物理的、空间分布的地下水流动和溶质运移过程 |
[1] | 康绍忠, 霍再林, 李万红. 旱区农业高效用水及生态环境效应研究现状与展望[J]. 中国科学基金, 2016, 30(3): 208-212. |
[Kang Shaozhong, Huo Zailin, Li Wanhong. High-efficient water use and eco-environmental impacts in agriculture in arid regions: Advance and future strategies[J]. Bulletin of National Natural Science Foundation of China, 2016, 30(3): 208-212.] | |
[2] | 汤秋鸿, 刘星才, 周园园, 等. “亚洲水塔”变化对下游水资源的连锁效应[J]. 中国科学院院刊, 2019, 34(11): 1306-1312. |
[Tang Qiuhong, Liu Xingcai, Zhou Yuanyuan, et al. Cascading impacts of Asian water tower change on downstream water system[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1306-1312.] | |
[3] | Qadir M, Quillérou E, Nangia V, et al. Economics of salt-induced land degradation and restoration[J]. Natural Resources Forum, 2014, 38(4): 282-295. |
[4] |
Shrivastava P, Kumar R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation[J]. Saudi Journal of Biological Sciences, 2015, 22(2): 123-131.
doi: 10.1016/j.sjbs.2014.12.001 pmid: 25737642 |
[5] | Weng Y L, Gong P, Zhu Z L. A spectral index for estimating soil salinity in the Yellow River Delta region of China using EO-1 Hyperion data[J]. Pedosphere, 2010, 20(3): 378-388. |
[6] | 杜学军, 闫彬伟, 许可, 等. 盐碱地水盐运移理论及模型研究进展[J]. 土壤通报, 2021, 52(3): 713-721. |
[Du Xuejun, Yan Binwei, Xu Ke, et al. Research progress on water-salt transport theories and models in saline-alkali soil[J]. Chinese Journal of Soil Science, 2021, 52(3): 713-721.] | |
[7] | Zhang H M, Xiong Y W, Huang G H, et al. Effects of water stress on processing tomatoes yield, quality and water use efficiency with plastic mulched drip irrigation in sandy soil of the Hetao Irrigation District[J]. Agricultural Water Management, 2017, 179: 205-214. |
[8] | Mandare A B, Ambast S K, Tyagi N K, et al. On-farm water management in saline groundwater area under scarce canal water supply condition in the northwest India[J]. Agricultural Water Management, 2008, 95(5): 516-526. |
[9] | Wahba M A S, Christen E W. Modeling subsurface drainage for salt load management in southeastern Australia[J]. Irrigation and Drainage Systems, 2006, 20(2-3): 267-282. |
[10] | Fan X, Pedroli B, Liu G, et al. Soil salinity development in the Yellow River Delta in relation to groundwater dynamics[J]. Land Degradation & Development, 2012, 23(2): 175-189. |
[11] | 曾邯斌, 苏春利, 谢先军, 等. 河套灌区西部浅层地下水咸化机制[J]. 地球科学, 2021, 46(6): 2267-2277. |
[Zeng Hanbin, Su Chunli, Xie Xianjun, et al. Mechanism of salinization of shallow groundwater in western Hetao Irrigation Area[J]. Earth Science, 2021, 46(6): 2267-2277.] | |
[12] |
Rengasamy P. World salinization with emphasis on Australia[J]. Journal of Experimental Botany, 2006, 57(5): 1017-1023.
doi: 10.1093/jxb/erj108 pmid: 16510516 |
[13] | 樊自立, 马英杰, 马映军. 中国西部地区的盐渍土及其改良利用[J]. 干旱区研究, 2001, 18(3): 1-6. |
[Fan Zili, Ma Yingjie, Ma Yingjun. Salinized soils and their improvement and utilization in west China[J]. Arid Zone Research, 2001, 18(3): 1-6.] | |
[14] |
苏春利, 纪倩楠, 陶彦臻, 等. 河套灌区西部土壤盐渍化分异特征及其主控因素[J]. 干旱区研究, 2022, 39(3): 916-923.
doi: 10.13866/j.azr.2022.03.25 |
[Su Chunli, Ji Qiannan, Tao Yanzhen, et al. Differentiation characteristics and main influencing factors of soil salinization in the west of Hetao Irrigation Area[J]. Arid Zone Research, 2022, 39(3): 916-923.]
doi: 10.13866/j.azr.2022.03.25 |
|
[15] | 崔莉红, 朱焱, 赵天兴, 等. 季节性冻融土壤盐分离子组成与冻结层盐分运移规律研究[J]. 农业工程学报, 2019, 35(10): 75-82. |
[Cui Lihong, Zhu Yan, Zhao Tianxing, et al. Soil ion components and soil salts transport in frozen layer in seasonal freezing-thawing areas[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(10): 75-82.] | |
[16] | 李瑞平. 冻融土壤水热盐运移规律及其SHAW模型模拟研究[D]. 呼和浩特: 内蒙古农业大学, 2007. |
[Li Ruiping. Study on soil water-heat-salt transfer during freezing-thawing and its simulation by SHAW[D]. Hohhot: Inner Mongolia Agricultural University, 2007.] | |
[17] | 汪林, 甘泓, 于福亮, 等. 西北地区盐渍土及其开发利用中存在问题的对策[J]. 水利学报, 2001(6): 90-95. |
[Wang Lin, Gan Hong, Yu Fuliang, et al. Salted soil and its development in northwest China[J]. Journal of Hydraulic Engineering, 2001(6): 90-95.] | |
[18] |
蒋磊, 刘小龙, 郭帅, 等. 基于Logistic回归分析的土壤盐渍化易发性评价——以新疆南疆塔里木灌区为例[J]. 干旱区地理, 2023, 46(11): 1858-1867.
doi: 10.12118/j.issn.1000-6060.2023.073 |
[Jiang Lei, Liu Xiaolong, Guo Shuai, et al. Evaluation of soil salinization susceptibility based on Logistic regression analysis: A case of Tarim irrigation area in southern Xinjiang[J]. Arid Land Geography, 2023, 46(11): 1858-1867.]
doi: 10.12118/j.issn.1000-6060.2023.073 |
|
[19] | Daliakopoulos I N, Tsanis I K, Koutroulis A, et al. The threat of soil salinity: A European scale review[J]. Science of the Total Environment, 2016, 573: 727-739. |
[20] | 王学全, 高前兆, 卢琦. 内蒙古河套灌区水资源高效利用与盐渍化调控[J]. 干旱区资源与环境, 2005(6): 120-125. |
[Wang Xuequan, Gao Qianzhao, Lu Qi. Effective use of water resources and salinity and waterlogging control in the Hetao Irrigation Areas of Inner Mongolia[J]. Journal of Arid Land Resources and Environment, 2005(6): 120-125.] | |
[21] | Kramer I, Mau Y. Modeling the effects of salinity and sodicity in agricultural systems[J]. Water Resources Research, 2023, 59(6): e2023WR034750, doi: 10.1029/2023WR034750. |
[22] | Zou P, Yang J S, Fu J R, et al. Artificial neural network and time series models for predicting soil salt and water content[J]. Agricultural Water Management, 2010, 97(12): 2009-2019. |
[23] | Lei G, Zeng W, Yu J, et al. A comparison of physical-based and machine learning modeling for soil salt dynamics in crop fields[J]. Agricultural Water Management, 2023, 277( 2023): 108115, doi: 10.1016/j.agwat.2022.108115. |
[24] |
解雪峰, 濮励杰, 朱明, 等. 土壤水盐运移模型研究进展及展望[J]. 地理科学, 2016, 36(10): 1565-1572.
doi: 10.13249/j.cnki.sgs.2016.10.014 |
[Xie Xuefeng, Pu Lijie, Zhu Ming, et al. Evolution and prospect in modeling of water and salt transport in soils[J]. Scientia Geographica Sinica, 2016, 36(10): 1565-1572.]
doi: 10.13249/j.cnki.sgs.2016.10.014 |
|
[25] | 胡安焱, 高瑾, 贺屹, 等. 干旱内陆灌区土壤水盐模型[J]. 水科学进展, 2002, 13(6): 726-729. |
[Hu Anyan, Gao Jin, He Yi, et al. Soil water and salt balance model for irrigation district in arid and inland region[J]. Advances in Water Science, 2002, 13(6): 726-729.] | |
[26] | Liu Y N, Zhu Y, Mao W, et al. Development and application of a water and salt balance model for well-canal conjunctive irrigation in semiarid areas with shallow water tables[J]. Agriculture, 2022, 12(3): 399, doi: 10.3390/agriculture12030399. |
[27] | Szabolcs I. Salt balance in saline and alkali soils[J]. Acta Agronomica Academiae Scientiarum Hungaricae, 1976, 25(1-2): 231-242. |
[28] | Yao R J, Yang J S, Zhang T J, et al. Studies on soil water and salt balances and scenarios simulation using SaltMod in a coastal reclaimed farming area of eastern China[J]. Agricultural Water Management, 2014, 131: 115-123. |
[29] | Inam A, Adamowski J, Prasher S, et al. Parameter estimation and uncertainty analysis of the spatial agro hydro salinity model (SAHYSMOD) in the semi-arid climate of Rechna Doab, Pakistan[J]. Environmental Modelling & Software, 2017, 94: 186-211. |
[30] | Liu Y, Zeng W Z, Ao C, et al. Strategy of subsurface pipe drainage system to alleviate soil salinization based on the DRAINMOD model[J]. Irrigation and Drainage, 2022, 71(1): 120-136. |
[31] | Richards L A. Capillary conduction of liquids through porous mediums[J]. Physics, 1931, 1(5): 318-333. |
[32] | 李保国, 胡克林, 黄元仿, 等. 土壤溶质运移模型的研究及应用[J]. 土壤, 2005, 37(4): 345-352. |
[Li Baoguo, Hu Kelin, Huang Yuanfang, et al. Advances in modeling and applications of soil solute transport[J]. Soils, 2005, 37(4): 345-352.] | |
[33] | Nielsen D R, Biggar J W. Miscible displacement: III. Theoretical considerations[J]. Soil Science Society of America Journal, 1962, 26(3): 216-221. |
[34] | Vereecken H, Schnepf A, Hopmans J W, et al. Modeling soil processes: Review, key challenges, and new perspectives[J]. Vadose Zone Journal, 2016, 15(5): vzj2015.09.0131, doi: 10.2136/vzj2015.09.0131. |
[35] | 焦会青, 盛钰, 赵成义, 等. 基于 COMSOL 软件的绿洲盐渍化土壤中多离子耦合运移模型构建[J]. 农业工程学报, 2018, 34(15): 100-107. |
[Jiao Huiqing, Sheng Yu, Zhao Chengyi, et al. Modeling of multiple ions coupling transport for salinizes soil in oasis based on COMSOL[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(15): 100-107.] | |
[36] | Kramer I, Mau Y. Soil degradation risks assessed by the SOTE model for salinity and sodicity[J]. Water Resources Research, 2020, 56(10): e2020WR027456, doi: 10.1029/2020WR027456. |
[37] | Zhu C M, Ding J L, Zhang Z P. Revealing the scale- and location-specific variation and control factors of soil salinity using bi-dimensional empirical modal decomposition[J]. Land Degradation & Development, 2022, 33(17): 3446-3460. |
[38] | Wang H D, She D L, Cardoso R. Understanding the effect of seasonal climate variability on the salinity in unsaturated agricultural soil[J]. Agronomy, 2023, 13(11): 2802, doi: 10.3390/agronomy13112802. |
[39] | Jury W A, Sposito G, White R E. A transfer function model of solute transport through soil: 1. Fundamental concepts[J]. Water Resources Research, 1986, 22(2): 243-247. |
[40] | 吴谋松. 冻融土壤水热盐运移规律研究及数值模拟[D]. 武汉: 武汉大学, 2016. |
[Wu Mousong. Water, heat and solute transport in frozen soil: Experimental and modeling study[D]. Wuhan: Wuhan University, 2016.] | |
[41] | 熊吕阳. 干旱地下水浅埋农业流域水转化多过程模拟及用水调控研究[D]. 北京: 中国农业大学, 2021. |
[Xiong Lüyang. Modeling agro-hydrological multi-processes and studying the regulation of water use for arid agricultural watersheds with shallow groundwater[D]. Beijing: China Agricultural University, 2021.] | |
[42] | Xun Y H, Xiao X, Sun C, et al. Modeling heat-water-salt transport, crop growth and water use in arid seasonally frozen regions with an improved coupled SPAC model[J]. Journal of Hydrology, 2022, 615: 128703, doi: 10.1016/j.jhydrol.2022.128703. |
[43] | Lu P, Yang Y, Luo W, et al. Numerical simulation of soil water-salt dynamics and agricultural production in reclaiming coastal areas using subsurface pipe drainage[J]. Agronomy, 2023, 13(2): 588, doi: 10.3390/agronomy13020588. |
[44] | 罗长寿, 左强, 李保国, 等. 冬小麦生长条件下改进遗传算法在根系水盐运移模型中的应用研究[J]. 农业工程学报, 2005, 21(11): 38-42. |
[Luo Changshou, Zuo Qiang, Li Baoguo, et al. Simulating soil water and solute transport in a soil-wheat system using a neural network model with an improved genetic algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(11): 38-42.] | |
[45] | Xu X, Huang G H, Sun C, et al. Assessing the effects of water table depth on water use, soil salinity and wheat yield: Searching for a target depth for irrigated areas in the upper Yellow River Basin[J]. Agricultural Water Management, 2013, 125: 46-60. |
[46] | 杨树青, 杨金忠, 史海滨, 等. 干旱区微咸水灌溉的水-土环境效应预测研究[J]. 水利学报, 2008, 39(7): 854-862. |
[Yang Shuqing, Yang Jinzhong, Shi Haibin, et al. Prediction of water-soil environment effect under brackish water irrigation in arid area[J]. Journal of Hydraulic Engineering, 2008, 39(7): 854-862.] | |
[47] | Xiao X, Xu X, Ren D Y, et al. Modeling the behavior of shallow groundwater system in sustaining arid agroecosystems with fragmented land use[J]. Agricultural Water Management, 2021, 249: 106811, doi: 10.1016/j.agwat.2021.106811. |
[48] | Bailey R T, Hosseini P. Comprehensive simulation of salinity transport in irrigated watersheds using an updated version of SWAT-MODFLOW[J]. Environmental Modelling & Software, 2023, 159: 105566, doi: 10.1016/j.envsoft.2022.105566. |
[49] | Utset A, Borroto M. A modeling-GIS approach for assessing irrigation effects on soil salinization under global warming conditions[J]. Agricultural Water Management, 2001, 50(1): 53-63. |
[50] | Ren D Y, Wei B Y, Xu X, et al. Analyzing spatiotemporal characteristics of soil salinity in arid irrigated agro-ecosystems using integrated approaches[J]. Geoderma, 2019, 356: 113935, doi: 10.1016/j.geoderma.2019.113935. |
[51] | Xiong L Y, Xu X, Ren D Y, et al. Enhancing the capability of hydrological models to simulate the regional agro-hydrological processes in watersheds with shallow groundwater: Based on the SWAT framework[J]. Journal of Hydrology, 2019, 572: 1-16. |
[52] | 黄亚捷, 李贞, 卓志清, 等. 用SahysMod模型研究不同灌排管理情景土壤水盐动态[J]. 农业工程学报, 2020, 36(11): 129-140. |
[Huang Yajie, Li Zhen, Zhuo Zhiqing, et al. Soil water and salt dynamics under different irrigation and drainage management scenarios based on SahysMod model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(11): 129-140.] | |
[53] | Qureshi A S, Eshmuratov D, Bezborodov G. Determining optimal groundwater table depth for maximizing cotton production in the Sardarya Province of Uzbekistan[J]. Irrigation and Drainage, 2011, 60(2): 241-252. |
[54] | 张雪晨, 李越, 陈志君, 等. 膜下滴灌土壤水盐与玉米产量对节水控盐灌溉模式响应的模拟[J]. 农业工程学报, 2022, 38(增刊1): 47-58. |
[Zhang Xuechen, Li Yue, Chen Zhijun, et al. Simulation of the responses of soil water, salt and maize yield to water-saving irrigation and salinity control regimes under mulched drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(Suppl. 1): 47-58.] | |
[55] | 陈艳梅, 王少丽, 高占义, 等. 基于SALTMOD模型的灌溉水矿化度对土壤盐分的影响[J]. 灌溉排水学报, 2012, 31(3): 11-16. |
[Chen Yanmei, Wang Shaoli, Gao Zhanyi, et al. Effect of irrigation water mineralization on soil salinity based on SALTMOD model[J]. Journal of Irrigation and Drainage, 2012, 31(3): 11-16.] | |
[56] | Rasouli F, Kiani Pouya A, Šimůnek J. Modeling the effects of saline water use in wheat-cultivated lands using the UNSATCHEM model[J]. Irrigation Science, 2013, 31: 1009-1024. |
[57] | 庄旭东, 冯绍元, 于昊, 等. SWAP模型模拟暗管排水条件下土壤水盐运移[J]. 灌溉排水学报, 2020, 39(8): 93-101. |
[Zhuang Xudong, Feng Shaoyuan, Yu Hao, et al. Simulating water flow and salt transport in soil under the impact of subsurface drains using the SWAP model[J]. Journal of Irrigation and Drainage, 2020, 39(8): 93-101.] | |
[58] |
Eishoeei E, Nazarnejad H, Miryaghoubzadeh M. Temporal soil salinity modeling using SaltMod model in the west side of Urmia hyper saline lake, Iran[J]. Catena, 2019, 176: 306-314.
doi: 10.1016/j.catena.2019.01.017 |
[1] | 谢俊博, 王兴鹏, 何帅, 刘洋, 忠智博, 李妍, 洪国军. 基于光谱指数建模的沙井子灌区土壤盐分反演[J]. 干旱区地理, 2024, 47(7): 1199-1209. |
[2] | 朱磊, 王科, 丁一民, 孙振源, 孙伯颜. 基于Sentinel-2的青铜峡灌区水稻和玉米种植分布早期识别[J]. 干旱区地理, 2024, 47(5): 850-860. |
[3] | 黄秋淞, 何浩. 耦合生态系统服务和景观连通性的环塔里木盆地绿洲区生态安全格局研究[J]. 干旱区地理, 2024, 47(10): 1745-1754. |
[4] | 张齐飞, 陈亚宁, 孙从建, 向燕芸, 郝海超. 塔里木河流域水储量变化及绿洲生态安全评估[J]. 干旱区地理, 2024, 47(1): 1-14. |
[5] | 杨荣美, 周宏, 张燕妮, 卢训贤, 王娜娜. 基于熵权TOPSIS方法与模糊物元模型的河西走廊地区旅游生态安全评估[J]. 干旱区地理, 2024, 47(1): 117-126. |
[6] | 李洪庆,杨瑀,张俊红. 雅鲁藏布江山南宽谷流域生态安全格局构建[J]. 干旱区地理, 2023, 46(9): 1503-1513. |
[7] | 李科, 丁建丽, 韩礼敬, 葛翔宇, 顾永昇, 周倩, 吕阳霞. 基于PlanetScope影像的典型绿洲土壤盐渍化数字制图[J]. 干旱区地理, 2023, 46(8): 1291-1302. |
[8] | 石聪, 陈礼瀚, 张怡菲, 何帅, 谢海霞. 新疆小海子灌区耕地土壤盐渍化特征研究[J]. 干旱区地理, 2023, 46(8): 1314-1323. |
[9] | 田柳兰, 王珊珊, 毋兆鹏. 基于多时相遥感数据的乌鲁木齐市生态安全格局构建[J]. 干旱区地理, 2023, 46(7): 1155-1165. |
[10] | 张萨日郎, 乌兰图雅, 布和, 咏梅, 斯琴朝克图, 张卫青. 近40 a蒙古高原土地沙漠化研究的文献计量学分析[J]. 干旱区地理, 2023, 46(12): 1984-1994. |
[11] | 蒋磊, 刘小龙, 郭帅, 何亮, 邢建磊, 郭俊杰. 基于Logistic回归分析的土壤盐渍化易发性评价——以新疆南疆塔里木灌区为例[J]. 干旱区地理, 2023, 46(11): 1858-1867. |
[12] | 刘鑫, 亢燕铭, 辛渝, 陈勇航, 周海江, 秦汉, 何清, 王智敏. RegCM4.6两种积云参数化方案在东亚模拟结果的评估[J]. 干旱区地理, 2023, 46(1): 23-35. |
[13] | 赵爽,丁建丽,韩礼敬,黄帅,葛翔宇. 新疆典型盐渍土微波介电特性响应分析与建模[J]. 干旱区地理, 2022, 45(5): 1534-1546. |
[14] | 李伊彤,荣丽华,李文龙,程磊. 生态重要性视角下东北林区县域生态安全格局研究——以呼伦贝尔市阿荣旗为例[J]. 干旱区地理, 2022, 45(5): 1615-1625. |
[15] | 张晓东,赵志鹏,赵银鑫,高学花,马玉学,刘乃静,吉卫波. 银川市景观生态风险评价与生态安全格局优化构建[J]. 干旱区地理, 2022, 45(5): 1626-1636. |
|