干旱区地理 ›› 2024, Vol. 47 ›› Issue (3): 413-423.doi: 10.12118/j.issn.1000-6060.2023.431
高彦婷1(), 张芮1(), 董博2, 李青青1, 刘柯含1
收稿日期:
2023-08-16
修回日期:
2023-10-23
出版日期:
2024-03-25
发布日期:
2024-03-29
通讯作者:
张芮(1980-),男,博士,教授,主要从事节水灌溉与水资源利用研究. E-mail: zhr_1029@163.com作者简介:
高彦婷(1983-),女,在读博士,副教授,主要从事节水灌溉与水资源利用研究. E-mail: 152140111767@163.com
基金资助:
GAO Yanting1(), ZHANG Rui1(), DONG Bo2, LI Qingqing1, LIU Kehan1
Received:
2023-08-16
Revised:
2023-10-23
Published:
2024-03-25
Online:
2024-03-29
摘要:
为明确垄沟覆盖集雨模式对玉米根际土壤微生物群落结构及多样性的影响,选取“登义”2号为试验材料,采用单因素完全随机试验设计,以常规平栽不覆盖为对照(CK),依次设置垄覆普通黑色地膜沟不覆盖(HL)、垄覆液态地膜沟不覆盖(YL)、垄不覆盖沟覆秸秆(NJ)、垄覆液态地膜沟覆秸秆(YJ)、垄覆普通黑色地膜沟覆秸秆(HJ)共计6个处理,利用Illumina高通量测序技术分析土壤微生物群落构成及多样性。结果表明:(1) 垄覆膜沟覆秸秆的集雨模式均有利于玉米增产、提高水分利用效率,其中HJ处理的穗行数、千粒重、产量及水分利用效率均最大,分别较对照CK提高11.22%、31.31%、88.02%、79.83%,且与CK间差异均显著(P<0.05),而垄无覆盖沟覆秸秆的NJ处理的产量及水分利用效率均较CK低。(2) 垄覆地膜各处理均能显著提高微生物群落多样性,且能改变微生物结构,但垄无覆盖沟覆秸秆的NJ处理却不能。(3) 各处理的微生物群落组成在门、纲水平上均受到覆盖集雨模式的影响。土壤微生物群落中主要优势菌门为变形菌门(Proteobacteria)、酸杆菌门(Acidobacteria)、芽单胞菌门(Gemmatimonadetes)和拟杆菌门(Bacteroidetes);主要优势菌纲为γ-变形菌纲(Gammaproteobacteria,占比25.8%)、拟杆菌纲(Bacteroidia,占比8.4%)和α-变形菌纲(Alphaproteobacteria,占比7.7%),且垄沟覆盖有助于提高土壤微生物丰富度、多样性和均匀度指数,即垄沟集雨模式可通过改变土壤微生物门、纲水平的结构及组成,实现玉米增产的效果。
高彦婷, 张芮, 董博, 李青青, 刘柯含. 垄沟覆盖集雨模式对玉米根际土壤微生物多样性的影响[J]. 干旱区地理, 2024, 47(3): 413-423.
GAO Yanting, ZHANG Rui, DONG Bo, LI Qingqing, LIU Kehan. Effects of ridge mulching and rain harvesting patterns on microbial diversity in maize rhizosphere soil[J]. Arid Land Geography, 2024, 47(3): 413-423.
表1
不同集雨模式下玉米产量及产量性状"
处理 | 穗长/cm | 穗粗/cm | 穗行数 | 行粒数 | 千粒重/g | 产量/kg·hm-2 |
---|---|---|---|---|---|---|
HL | 25.76±1.26a | 5.31±0.27a | 14.56±0.87ab | 41.39±0.96a | 415.88±19.70a | 8525.00±1411.42ab |
YL | 25.42±1.77a | 5.43±0.07a | 14.56±0.16ab | 41.39±2.01a | 423.81±9.66a | 9141.75±1227.94ab |
NJ | 26.53±0.27a | 5.27±0.36a | 14.89±0.42a | 42.17±0.71a | 334.95±41.99b | 5112.88±228.41c |
YJ | 25.51±1.26a | 5.37±0.11a | 14.56±0.16ab | 40.39±1.61a | 428.67±16.44a | 8257.03±437.33b |
HJ | 26.14±0.51a | 5.40±0.05a | 15.17±0.14a | 40.06±0.68a | 432.30±2.01a | 10613.50±1380.44a |
CK | 25.58±0.47a | 5.36±0.03a | 13.64±0.27b | 41.21±1.22a | 329.21±32.39b | 5644.77±565.37c |
表2
不同集雨模式下玉米耗水特性及水分利用效率"
处理 | 播种前贮水量/mm | 收获后贮水量/mm | 降水量/mm | 耗水量/mm | 水分利用效率/kg·hm-2·mm-1 |
---|---|---|---|---|---|
HL | 173.88±12.86d | 225.64±4.46a | 390.51 | 338.76±14.12b | 25.14±3.98ab |
YL | 228.44±4.39bc | 219.92±13.35a | 390.51 | 399.03±11.29a | 22.87±2.63ab |
NJ | 243.40±9.85ab | 222.28±10.98a | 390.51 | 411.63±8.08a | 12.42±0.31c |
YJ | 231.71±6.89bc | 223.18±3.74a | 390.51 | 399.04±4.05a | 20.70±1.17b |
HJ | 226.99±2.65c | 229.05±10.03a | 390.51 | 388.45±7.39a | 27.27±3.09a |
CK | 226.65±2.43c | 212.17±23.39a | 390.51 | 405.00±21.89a | 13.98±1.51c |
表3
土壤微生物群落α多样性"
处理 | 样本文库覆盖率 | 多样性指数 | 群落丰富度指数 | 群落多样性指数 | |||||
---|---|---|---|---|---|---|---|---|---|
Shannon | Simpson | Chao1 | ACE | Observed_species | PD_whole_tree | ||||
YJ | 0.987±0.001a | 10.03±0.02a | 0.998±0.0000a | 4161±065a | 4216±054a | 3739±60ab | 217±6ab | ||
YL | 0.986±0.002a | 10.10±0.20a | 0.998±0.0006ab | 4296±341a | 4351±328a | 3838±250a | 222±12a | ||
HJ | 0.984±0.006a | 9.98±0.02a | 0.998±0.0006ab | 4405±645a | 4451±613a | 3779±226ab | 223±13a | ||
HL | 0.986±0.001a | 9.98±0.08a | 0.997±0.0006bc | 4161±143a | 4226±135a | 3737±122ab | 218±9ab | ||
NJ | 0.987±0.001a | 9.67±0.08b | 0.996±0.0006bc | 3912±046a | 3979±057a | 3485±71b | 204±2b | ||
CK | 0.986±0.002a | 9.75±0.14b | 0.996±0.0010c | 4082±206a | 4152±187a | 3593±115ab | 210±8ab |
表4
含水率和温度与优势菌种的相关系数"
相关指标 | 变形菌门(Proteobacteria) | 酸杆菌门 (Acidobacteri) | 芽单胞菌门 (Gemmatimonadet) | 拟杆菌门(Bacteroidetes) | 放线菌门 (Actinobacteria) |
---|---|---|---|---|---|
含水率 | -0.600* | 0.371 | 0.943** | -0.829** | 0.086 |
温度 | -0.143 | -0.086 | 0.600* | -0.829** | -0.143 |
相关指标 | 浮霉菌门(Planctomycetes) | 绿弯菌门 (Chloroflexi) | 疣微菌门 (Verrucomicrobia) | 厚壁菌门 (Firmicutes) | 己科河菌门 (Rokubacteria) |
含水率 | 0.486* | 0.486* | -0.600* | -0.143 | -0.314 |
温度 | 0.200 | 0.314 | -0.086 | 0.200 | -0.771** |
[1] | 山仑, 邓西平, 康绍忠. 我国半干旱地区农业用水现状及发展方向[J]. 水利学报, 2002(9): 27-31. |
[Shan Lun, Deng Xiping, Kang Shaozhong. Current situation and perspective of agricultural water used in semiarid area of China[J]. Journal of Hydraulic Engineering, 2002(9): 27-31.] | |
[2] | 方彦杰, 秦安振, 雍蓓蓓. 种植模式和补灌对玉米生长发育及产量的影响[J]. 节水灌溉, 2019(6): 30-34, 42. |
[Fang Yanjie, Qin Anzhen, Yong Beibei. Effects of planting pattern and supplemental irrigation on dryland maize growth and yield[J]. Water Saving Irrigation, 2019(6): 30-34, 42.] | |
[3] | 胡恒觉. 揭示旱区资源生产潜力确立区域治理开发途径——评《中国北方旱区农业》[J]. 干旱地区农业研究, 1999(2): 135. |
[Hu Hengjue. Revealing the potential of resource production in arid regions and establishing ways of regional management and development: A review of “agriculture in arid regions of northern China”[J]. Agricultural Research in the Arid Areas, 1999(2): 135.] | |
[4] | 李凤民, 王静, 赵松岭. 半干旱黄土高原集水高效旱地农业的发展[J]. 生态学报, 1999, 19(2): 117-122. |
[Li Fengmin, Wang Jing, Zhao Songling. Development of efficient dry land agriculture for water harvesting in semi-arid Loess Plateau[J]. Acta Ecologica Sinica, 1999, 19(2): 117-122.] | |
[5] | 王凯瑜, 李援农, 方恒, 等. 覆膜集雨补灌对冬小麦产量和水分利用效率的影响[J]. 排灌机械工程学报, 2019, 37(8): 718-723. |
[Wang Kaiyu, Li Yuannong, Fang Heng, et al. Effects of plastic-film mulching and supplementary irrigation on yield and water use efficiency of winter wheat[J]. Journal of Drainage and Irrigation Machinery Engineering, 2019, 37(8): 718-723.] | |
[6] | 徐悦悦, 王楹鑫, 马向成, 等. 补灌对旱作集雨下麦田微生物呼吸与熵值的影响[J]. 农业机械学报, 2023, 54(2): 321-329, 409. |
[Xu Yueyue, Wang Yingxin, Ma Xiangcheng, et al. Response of wheat field microbial respiration and its entropy to different supplementary irrigation under ridge-furrow mulching system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(2): 321-329, 409.] | |
[7] | 李娟, 解文强, 崔婧婧, 等. 沟垄集雨系统垄宽对玉米水分和养分利用效率的影响[J]. 节水灌溉, 2021(5): 36-40. |
[Li Juan, Xie Wenqiang, Cui Jingjing, et al. Effect of ridge width on maize water and nutrient use efficiency under ridge-furrow rainfall harvesting planting mode[J]. Water Saving Irrigation, 2021(5): 36-40.] | |
[8] |
苏旺, 胡禄华, 王舰. 垄沟集雨覆盖对旱作马铃薯块茎淀粉合成关键酶活性、基因表达及淀粉累积的影响[J]. 核农学报, 2021, 35(3): 737-744.
doi: 10.11869/j.issn.100-8551.2021.03.0737 |
[Su Wang, Hu Luhua, Wang Jian. Effects of mulching on ridge-furrow for harvesting rainwater on activity and gene expression of starch synthesis key enzyme and starch accumulation of rain-fed potato tuber[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(3): 737-744.]
doi: 10.11869/j.issn.100-8551.2021.03.0737 |
|
[9] | 李青峰, 杜文华. 陇东旱塬区不同宽度垄沟集雨种植对玉米营养生长的影响[J]. 草原与草坪, 2013, 33(4): 54-57, 62. |
[Li Qingfeng, Du Wenhua. Effect of the different width of ridge-furrow planting on corn growth in semi-arid areas of Longdong[J]. Grassland and Turf, 2013, 33(4): 54-57, 62.] | |
[10] | 刘佩, 刘小利, 王金金, 等. 集雨种植模式对小麦-玉米周年农田土壤水分及作物产量的影响[J]. 灌溉排水学报, 2019, 38(6): 37-43. |
[Liu Pei, Liu Xiaoli, Wang Jinjin, et al. Soil moisture dynamic and crop production of a rainfed wheat-summer maize rotation system[J]. Journal of Irrigation and Drainage, 2019, 38(6): 37-43.] | |
[11] |
Wang Q, Song X Y, Li F C, et al. Optimum ridge-furrow ratio and suitable ridge-mulching material for alfalfa production in rainwater harvesting in semi-arid regions of China[J]. Field Crops Research, 2015, 180: 186-196.
doi: 10.1016/j.fcr.2015.06.004 |
[12] | 李娟, 崔婧婧. 垄沟集雨模式下垄宽对糯玉米子粒营养物质积累和产量的影响[J]. 河北农业科学, 2021, 25(4): 26-30. |
[Li Juan, Cui Jingjing. Effects of ridge width on grain nutrient accumulation and yield of waxy maize under ridge-furrow rain collection mode[J]. Journal of Hebei Agricultural Sciences, 2021, 25(4): 26-30.] | |
[13] | 董宛麟, 于航, 张立祯, 等. 东北地区沟垄和地膜覆盖对土壤水分分布及利用的影响[J]. 玉米科学, 2019, 27(3): 114-121. |
[Dong Wanlin, Yu Hang, Zhang Lizhen, et al. Effects of ridge-furrow tillage and plastic film cover on soil moisture distribution and utilization in northeast of China[J]. Journal of Maize Sciences, 2019, 27(3): 114-121.] | |
[14] |
Zhao H, Xiong Y C, Li F M, et al. Plastic film mulch for half growing-season maximized WUE and yield of potato via moisture-temperature improvement in a semi-arid agroecosystem[J]. Agricultural Water Management, 2012, 104(2): 68-78.
doi: 10.1016/j.agwat.2011.11.016 |
[15] | 陆莎, 左洪超, 苗文辉, 等. 干旱区地膜覆盖玉米农田地表反照率动态参数化方法及其模拟效果分析[J]. 干旱区研究, 2018, 35(2): 461-470. |
[Lu Sha, Zuo Hongchao, Miao Wenhui, et al. Dynamic parameterization and simulation of surface albedo in maize cropland mulched by plastic film in arid region[J]. Arid Zone Research, 2018, 35(2): 461-470.] | |
[16] | 杨姗姗, 贾志宽, 张玉, 等. 集雨节灌种植方式对冬小麦产量和水分利用效率的影响[J]. 灌溉排水学报, 2014, 33(3): 97-100. |
[Yang Shanshan, Jia Zhikuan, Zhang Yu, et al. Effects of rainfall harvesting with water-saving irrigation cultivation on the yield and water use efficiency of winter wheat[J]. Journal of Irrigation and Drainage, 2014, 33(3): 97-100.] | |
[17] |
Mo F, Wang J Y, Zhou H, et al. Ridge-furrow plastic-mulching with balanced fertilization in rainfed maize (Zea mays L.): An adaptive management in east African Plateau[J]. Agricultural and Forest Meteorology, 2017, 236: 100-112.
doi: 10.1016/j.agrformet.2017.01.014 |
[18] | Kolota E, Adamczewska-Sowinska K. Living mulches in vegetable crops production: Perspectives and limitations[J]. Acta Scientiarum Polonorum-Hortorum Cultus, 2013, 12(6): 127-142. |
[19] |
Wei T, Wang L, Li Y, et al. Responses of microbial activity, abundance, and community in wheat soil after three years of heavy fertilization with manure-based compost and inorganic nitrogen[J]. Agriculture, Ecosystems & Environment, 2015, 213: 219-227.
doi: 10.1016/j.agee.2015.08.009 |
[20] |
Craig R A, Leo M C, Tim J C, et al. Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus[J]. Pedobiologia, 2011, 54: 309-320.
doi: 10.1016/j.pedobi.2011.07.005 |
[21] |
Zhu Y, Chen Y L, Gong X F, et al. Plastic film mulching improved rhizosphere microbes and yield of rainfed spring wheat[J]. Agricultural and Forest Meteorology, 2018, 263: 130-136.
doi: 10.1016/j.agrformet.2018.08.015 |
[22] |
Chen Y X, Wen X X, Sun Y L, et al. Mulching practices altered soil bacterial community structure and improved orchard productivity and apple quality after five growing seasons[J]. Scientia Horticulturae, 2014, 172: 248-257.
doi: 10.1016/j.scienta.2014.04.010 |
[23] | Wang Y J, Liu L, Luo Y, et al. Mulching practices alter the bacterial-fungal community and network in favor of soil quality in a semiarid orchard system[J]. Science of the Total Environment, 2020, 725: 138527, doi: 10.1016/j.scitotenv.2020.138527. |
[24] |
Farmer J, Zhang B, Jin X X, et al. Long-term effect of plastic film mulching and fertilization on bacterial communities in a brown soil revealed by high through-put sequencing[J]. Archives of Agronomy and Soil Science, 2016, 63(2): 230-241.
doi: 10.1080/03650340.2016.1193667 |
[25] |
Liao X L, Su Z H, Liu G D, et al. Impact of soil moisture and temperature on potato production using seepage and center pivot irrigation[J]. Agricultural Water Management, 2016, 165: 230-236.
doi: 10.1016/j.agwat.2015.10.023 |
[26] | 李丽淑, 樊吴静, 杨鑫, 等. 不同栽培方式、播种深度对冬种马铃薯土壤水热及产量的影响[J]. 西南农业学报, 2018, 31(4): 673-679. |
[Li Lishu, Fan Wujing, Yang Xin, et al. Effects of different cultivation methods and sowing depth on soil water, temperature and yield of winter potato[J]. Southwest China Journal of Agricultural Sciences, 2018, 31(4): 673-679.] | |
[27] | 王红丽, 张绪成, 于显枫, 等. 黑色地膜覆盖的土壤水热效应及其对马铃薯产量的影响[J]. 生态学报, 2016, 36(16): 5215-5226. |
[Wang Hongli, Zhang Xucheng, Yu Xianfeng, et al. Effect of using black plastic film as mulch on soil temperature and moisture and potato yield[J]. Acta Ecologica Sinica, 2016, 36(16): 5215-5226.] | |
[28] | 李荣, 王艳丽, 吴鹏年, 等. 宁南旱区沟垄覆盖改善土壤水热状况提高马铃薯产量[J]. 农业工程学报, 2017, 33(10): 168-175. |
[Li Rong, Wang Yanli, Wu Pengnian, et al. Ridge and furrow mulching improving soil water-temperature condition and increasing potato yield in dry-farming areas of south Ningxia[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(10): 168-175.] | |
[29] | 曹刚, 毕淑海, 赵明新, 等. 干旱区梨园不同覆盖条件下土壤环境因子综合性评价研究[J]. 干旱区地理, 2022, 45(3): 890-900. |
[Cao Gang, Bi Shuhai, Zhao Mingxin, et al. Comprehensive evaluation of soil environmental factors under differen mulching conditions in pear orchard in arid region[J]. Arid Land Geography, 2022, 45(3): 890-900.] | |
[30] | 付鑫, 王俊, 张祺, 等. 秸秆和地膜覆盖对渭北旱作玉米农田土壤氮组分与产量的影响[J]. 生态学报, 2018, 38(19): 6912-6920. |
[Fu Xin, Wang Jun, Zhang Qi, et al. Effects of straw and plastic film mulching on soil nitrogen fractions and corn yield in the Weibei rainfed highland[J]. Acta Ecologica Sinica, 2018, 38(19): 6912-6920.] | |
[31] |
Zhang K P, Xing Y, Wang G Y, et al. Ridge-furrow with film mulching practice ameliorates soil microbial metabolic activity and carbon utilization in rhizosphere soil of rapeseed (Brassica napus L.)[J]. Journal of Soils and Sediments, 2019, 19(6): 2764-2776.
doi: 10.1007/s11368-019-02243-4 |
[32] | 包开花, 蒙美莲, 陈有君, 等. 覆膜方式和保水剂对旱作马铃薯光合特性及产量的影响[J]. 干旱地区农业研究, 2016, 34(3): 139-143, 159. |
[Bao Kaihua, Meng Meilian, Chen Youjun, et al. Effects of plastic film mulching patterns and water retaining agent on photosynthetic characteristics and yield of rainfed potato[J]. Agricultural Research in the Arid Areas, 2016, 34(3): 139-143, 159.] | |
[33] | 纪晓玲, 张雄, 张静, 等. 不同覆盖方式对马铃薯光合特性及产量的影响[J]. 西北农业学报, 2018, 27(6): 819-825. |
[Ji Xiaoling, Zhang Xiong, Zhang Jing, et al. Effects of different mulching methods on photosynthetic characteristics and yield in potato[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2018, 27(6): 819-825.] | |
[34] |
陈玉章, 田慧慧, 李亚伟, 等. 秸秆带状沟覆垄播对旱地马铃薯产量和水分利用效率的影响[J]. 作物学报, 2019, 45(5): 714-727.
doi: 10.3724/SP.J.1006.2019.84097 |
[Chen Yuzhang, Tian Huihui, Li Yawei, et al. Effects of straw strip mulching on furrows and planting in ridges on water use efficiency and tuber yield in dryland potato[J]. Acta Agronomica Sinica, 2019, 45(5): 714-727.]
doi: 10.3724/SP.J.1006.2019.84097 |
|
[35] |
Yang K J, Wang F X, Shock C C, et al. Potato performance as influenced by the proportion of wetted soil volume and nitrogen under drip irrigation with plastic mulch[J]. Agricultural Water Management, 2017, 179: 260-270.
doi: 10.1016/j.agwat.2016.04.014 |
[36] | 韩博远, 张闻, 胡芳雨, 等. 模拟及实际根系分泌物对芘污染土壤微生物群落的影响[J]. 环境科学, 2022, 43(2): 1077-1088. |
[Han Boyuan, Zhang Wen, Hu Fangyu, et al. Influence of artificial root exudates and actual root exudates on the microbial community in pyrene-contaminated soil[J]. Environmental Science, 2022, 43(2): 1077-1088.] | |
[37] |
邓莹莲, 赵长林. 基于高通量测序分析云南大理剑川羊肚菌土壤细菌群落结构及多样性[J]. 中国农学通报, 2023, 39(10): 79-87.
doi: 10.11924/j.issn.1000-6850.casb2022-0286 |
[Deng Yinglian, Zhao Changlin. Soil bacterial community structure and diversity of morchella in Jianchuan of Dali in Yunnan Province based on high-throughput sequencing[J]. Chinese Agricultural Science Bulletin, 2023, 39(10): 79-87.] | |
[38] | 刁体伟, 陈晓姣, 魏鑫, 等. 基于可培养法与高通量测序对大头菜致腐菌筛选及细菌结构分析[J]. 中国调味品, 2022, 47(6): 44-49, 60. |
[Diao Tiwei, Chen Xiaojiao, Wei Xin, et al. Screening and bacterial structure analysis of spoilage bacteria in kohlrabi based on culturable method and high-throughput sequencing[J]. China Condiment, 2022, 47(6): 44-49, 60.] | |
[39] | 屈平平, 李涛, 杨明彩, 等. 合生素对断奶新西兰肉兔生长性能及盲肠微生物菌群结构的影响[J]. 饲料研究, 2022, 45(16): 70-77. |
[Qu Pingping, Li Tao, Yang Mingcai, et al. Effect of synbiotics on growth performance and cecal microbial flora structure of weaned New Zealand meat rabbits[J]. Feed Research, 2022, 45(16): 70-77.] | |
[40] | 胡敏, 苗庆丰, 史海滨, 等. 不同类型地膜覆盖对土壤水热及春玉米产量的影响[J]. 土壤, 2018, 50(3): 628-632. |
[Hu Min, Miao Qingfeng, Shi Haibin, et al. Mulching effects of different films on soil water, heat and yield of spri maize[J]. Soil, 2018, 50(3): 628-632.] | |
[41] | 李畅. 基于肠道菌群特异性表型探讨启宫丸方对多囊卵巢综合征痰湿证患者的干预作用研究[D]. 济南: 山东中医药大学, 2020. |
[Li Chang. study on the intervention effect of Qi Gong Wan in patients with phlegm-dampness syndrome of polycystic ovary syndrome based on intestinal flora-specificphenotype[D]. Jinan: Shandong University of Traditional Chinese Medicine, 2020.] | |
[42] | 张杰, 程伟, 李娜, 等. 夏秋茶大曲与传统中温大曲中微生物群落及多样性研究[J]. 酿酒科技, 2021(11): 36-44. |
[Zhang Jie, Cheng Wei, Li Na, et al. Microbial community and diversity of summer-autumn tea Daqu and traditional medium-temperature Daqu[J]. Liquor-Making Science & Technology, 2021(11): 36-44.] | |
[43] |
Zhao Y, Mao X M, Shukla M K, et al. Modeling soil water-heat dynamic changes in seed-maize fields under film mulching and deficit irrigation conditions[J]. Water, 2020, 12(5): 1330-1353.
doi: 10.3390/w12051330 |
[44] |
Dong Q, Dang T H, Guo S L, et al. Effect of different mulching measures on nitrate nitrogen leaching in spring maize planting system in south of Loess Plateau[J]. Agricultural Water Management, 2019, 213: 654-658.
doi: 10.1016/j.agwat.2018.09.044 |
[45] | 余舜尧, 江新凤, 李琛, 等. 覆盖对茶园土壤温度和杂草生长的影响[J]. 江西农业学报, 2021, 33(11): 78-82, 90. |
[Yu Shunyao, Jiang Xinfeng, Li Shen, et al. Effects of different mulching materials on soil temperature and weed growth in tea gardens[J]. Acta Agriculturae Jiangxi, 2021, 33(11): 78-82, 90.] | |
[46] | 王锐. 地膜覆盖对夏玉米农田水分转化过程及利用效率的影响[D]. 咸阳: 西北农林科技大学, 2023. |
[Wang Rui. Effects of plastic film mulching on water transformation and utilization efficiency of summer maize[D]. Xianyang: Northwest A & F University, 2023.] | |
[47] | 康恩祥, 何宝林, 刘晓伟, 等. 不同粒径砂砾石覆盖对砂田西瓜土壤微生物和酶活性的影响[J]. 长江蔬菜, 2011(24): 52-54. |
[Kang Enxiang, He Baolin, Liu Xiaowei, et al. Variation of microbial biomass and enzyme activities in gravel-sand mulching soil with different particle sizes of watermelon field[J]. Journal of Changjiang Vegetables, 2011(24): 52-54.] | |
[48] | 吴宏亮, 许强, 陈阜, 等. 不同覆盖措施对旱区农田土壤酶活性及西瓜产量的影响[J]. 干旱地区农业研究, 2014, 32(3): 173-178. |
[Wu Hongliang, Xu Qiang, Chen Fu, et al. Effect of different mulching methods on soil enzyme activity and watermelon production in farmland of arid areas[J]. Agricultural Research in the Arid Areas, 2014, 32(3): 173-178.] | |
[49] |
Kang Y C, Liu Y, Qin S H, et al. Ridge-mulch tillage and rotation with broad bean affect soil microbial community, diversity and crop yield in a long-term potato continuous cropping field[J]. Soil Use and Management, 2021, 37: 677-688.
doi: 10.1111/sum.v37.3 |
[50] | 冯琦. PAHs污染对农田土壤微生物群落组成的影响[D]. 大连: 大连理工大学, 2019. |
[Feng Qi. Effects of polycyclic aromatic hydrocarbons (PAHs) pollution on microbial community composition in farmland[D]. Dalian: Dalian University of Technology, 2019.] | |
[51] |
Yang Y, Tong Y N, Chadwick D, et al. Different techniques for high-throughput amplicon sequencing of the soil bacterial community structure after spring maize cultivation[J]. Soil Use and Management, 2021, 37(4): 855-865.
doi: 10.1111/sum.v37.4 |
[52] |
Christian L L, Kelly S R, Zach A, et al. Temporal variability in soil microbial communities across land-use types[J]. The ISME Journal, 2013, 7(8): 1641-1650.
doi: 10.1038/ismej.2013.50 |
[53] |
Ai C, Zhang S Q, Zhang X, et al. Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation[J]. Geoderma, 2018, 319: 156-166.
doi: 10.1016/j.geoderma.2018.01.010 |
[1] | 韩楚翘, 郑江华, 王哲, 于雯婕. 基于PLUS-InVEST模型吐哈盆地陆地生态系统碳储量时空变化及多情景模拟[J]. 干旱区地理, 2024, 47(2): 260-269. |
[2] | 刘焕才,史书琦,李曼,张艳芳,韩丽. 疏勒河流域中游地区玉米性状及单产的影响因子研究[J]. 干旱区地理, 2023, 46(9): 1453-1466. |
[3] | 李诗瑶, 丛士翔, 王融融, 余海龙, 黄菊莹. 基于无人机多光谱遥感的干旱胁迫下玉米冠层SPAD值监测[J]. 干旱区地理, 2023, 46(7): 1121-1132. |
[4] | 陈淑君,许国昌,吕志平,马铭悦,李晗羽,朱玉岩. 中国植被覆盖度时空演变及其对气候变化和城市化的响应[J]. 干旱区地理, 2023, 46(5): 742-752. |
[5] | 王振, 李均力, 张久丹, 吴浩儒, 郭雪飞. 输水漫溢对塔里木河中游胡杨林恢复的影响[J]. 干旱区地理, 2023, 46(1): 94-102. |
[6] | 张久丹, 李均力, 包安明, 白洁, 刘铁, 黄粤. 2013—2020年塔里木河流域胡杨林生态恢复成效评估[J]. 干旱区地理, 2022, 45(6): 1824-1835. |
[7] | 刘玉婷,张齐飞,刘景时,关含笑,孟凡雪. 近20 a新疆南部植被覆盖度时空特征及对气候因素的响应——以塔什库尔干塔吉克自治县为例[J]. 干旱区地理, 2022, 45(5): 1481-1489. |
[8] | 张博,李雪梅,秦启勇,李超,孙天瑶. 中国天山积雪垂直分布异质性研究[J]. 干旱区地理, 2022, 45(3): 754-762. |
[9] | 曹刚,毕淑海,赵明新,曹素芳,王玮,牛济军,李红旭. 干旱区梨园不同覆盖条件下土壤环境因子综合性评价研究[J]. 干旱区地理, 2022, 45(3): 890-900. |
[10] | 李玉朋,陈亚宁,叶朝霞,王非,孙帆,秦景秀. 塔里木河下游输水20 a的生态响应[J]. 干旱区地理, 2021, 44(3): 700-707. |
[11] | 易颖,刘时银,朱钰,吴坤鹏. 2002—2018年叶尔羌河流域积雪时空变化研究[J]. 干旱区地理, 2021, 44(1): 15-26. |
[12] | 谷佳贺,薛华柱,董国涛,周利娟,李静茹,党素珍,李尚志. 黄河流域NDVI/土地利用对蒸散发时空变化的影响[J]. 干旱区地理, 2021, 44(1): 158-167. |
[13] | 张翀,白子怡,李学梅,冉祺祺,韦振锋,雷田旺,王娜. 2001—2018年黄土高原植被覆盖人为影响时空演变及归因分析[J]. 干旱区地理, 2021, 44(1): 188-196. |
[14] | 孙国军, 李卫红, 朱成刚, 崔 东, 刘海军 . 2000—2015 年伊犁河谷植被覆盖时空变化特征[J]. 干旱区地理, 2020, 43(6): 1551-1558. |
[15] | 王华, 杨乾鹏, 田云杰, 郭山川, 唐鹏飞. 基于多时相Landsat影像的中亚地区植被覆盖遥感监测[J]. 干旱区地理, 2020, 43(4): 1023-1032. |
|