干旱区地理 ›› 2021, Vol. 44 ›› Issue (1): 15-26.doi: 10.12118/j.issn.1000–6060.2021.01.02
收稿日期:
2020-03-24
修回日期:
2020-10-09
出版日期:
2021-01-25
发布日期:
2021-03-09
通讯作者:
刘时银
作者简介:
易颖(1996-),女,硕士研究生,研究方向为积雪变化遥感研究. E-mail: 基金资助:
YI Ying1,2(),LIU Shiyin1,2(),ZHU Yu1,2,WU Kunpeng1,2
Received:
2020-03-24
Revised:
2020-10-09
Online:
2021-01-25
Published:
2021-03-09
Contact:
Shiyin LIU
摘要:
积雪是冰冻圈中较为活跃的因子,对气候环境变化敏感,其变化影响着全球气候和水文的变化。积雪覆盖日数(SCD)、降雪开始时间(SCOD)和融雪开始时间(SCMD)是影响地表物质和能量平衡的主要因素。使用MODIS无云积雪产品提取了叶尔羌河流域2002年7月—2018年6月逐日积雪覆盖率(SCP),基于像元计算了SCD、SCOD和SCMD,系统地分析了其空间分布与变化特征,并探讨了其变化的原因及积雪面积的异常变化与ENSO的联系。结果表明:(1) 研究时段内,流域的积雪覆盖面积呈微弱减少趋势,与气温呈显著负相关,与降水呈显著正相关;2002—2018年,SCP随海拔的升高呈明显的线性增加趋势(R2=0.92、P<0.01));各海拔高度带最大SCP出现的月份大致随海拔的上升往后推迟,最小SCP出现月份无显著变化(集中在8月),海拔4000 m以下,春季的SCP小于冬季,海拔4000 m以上,春季的SCP大于冬季。(2) SCD、SCOD和SCMD有明显的海拔梯度,在流域内,从东北至西南,呈现出SCD增加,SCOD提前,SCMD推迟的特征;变化趋势上,流域91.9%的区域SCD表现为减少,65.6%的区域SCOD有往后推迟的趋势,77.4%的区域SCMD表现出提前的趋势。(3) 2006、2008年和2017年积雪覆盖面积异常偏大,而在2010年则异常偏小,其原因可能是ENSO影响了积雪的变化。(4) 以喀喇昆仑为主的高海拔地区,包括帕米尔高原东部的部分地区,其SCD、SCOD和SCMD分别表现出增加、提前和推迟的趋势,这种变化与其春秋温度的持续走低以及降水量的增加有关。
易颖,刘时银,朱钰,吴坤鹏. 2002—2018年叶尔羌河流域积雪时空变化研究[J]. 干旱区地理, 2021, 44(1): 15-26.
YI Ying,LIU Shiyin,ZHU Yu,WU Kunpeng. Spatiotemporal variation of snow cover in the Yarkant River Basin during 2002—2018[J]. Arid Land Geography, 2021, 44(1): 15-26.
[1] | Zhang T. Influence of the seasonal snow cover on the ground thermal regime: An overview[J]. Reviews of Geophysics, 2005, 43(4): RG4002. |
[2] |
Zimov S A, Schuur E A G, Chapin III F S. Permafrost and the global carbon budget[J]. Science (Washington), 2006,312(5780):1612-1613.
doi: 10.1126/science.1128908 |
[3] |
Henderson G R, Leathers D J, Hanson B. Circulation response to Eurasian versus North American anomalous snow scenarios in the northern Hemisphere with an AGCM coupled to a slab ocean model[J]. Journal of Climate, 2013,26(5):1502-1515.
doi: 10.1175/JCLI-D-11-00465.1 |
[4] |
Kolstad E W. Causal pathways for temperature predictability from snow depth[J]. Journal of Climate, 2017,30(23):9651-9663.
doi: 10.1175/JCLI-D-17-0280.1 |
[5] | Portner H O, Roberts D, Masson-Delmotte V, et al. IPCC special report on the ocean and cryosphere in a changing climate[J]. Geneva: IPCC Intergovernmental Panel on Climate Change, 2019. |
[6] | 肖鹏峰, 冯学智, 谢顺平, 等. 新疆天山玛纳斯河流域高分辨率积雪遥感研究进展[J]. 南京大学学报(自然科学版), 2015,51(5):909-920. |
[ Xiao Pengfeng, Feng Xuezhi, Xie Shunping, et al. Research progress of high-resolution remote sensing of snow in Manasi River Basin in Tianshan Mountains, Xinjiang Province[J]. Journal of Nanjing University (Natural Sciences), 2015,51(5):909-920. ] | |
[7] |
Brown R D, Robinson D A. Northern Hemisphere spring snow cover variability and change over 1922—2010 including an assessment of uncertainty[J]. The Cryosphere, 2011,5(1):219-229.
doi: 10.5194/tc-5-219-2011 |
[8] |
Wang Y, Huang X, Liang H, et al. Tracking snow variations in the northern Hemisphere using multi-source remote sensing data (2000—2015)[J]. Remote Sensing, 2018,10(1):136.
doi: 10.3390/rs10010136 |
[9] |
Zhang Y, Ma N. Spatiotemporal variability of snow cover and snow water equivalent in the last three decades over Eurasia[J]. Journal of Hydrology, 2018,559:238-251.
doi: 10.1016/j.jhydrol.2018.02.031 |
[10] |
Huang X, Deng J, Ma X, et al. Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China[J]. The Cryosphere, 2016,10(5):2453-2463.
doi: 10.5194/tc-10-2453-2016 |
[11] | 孙燕华, 黄晓东, 王玮, 等. 2003—2010 年青藏高原积雪及雪水当量的时空变化[J]. 冰川冻土, 2015,36(6):1337-1344. |
[ Sun Yanhua, Huang Xiaodong, Wang Wei, et al. Spatio-temporal changes of snow cover and snow water equivalent in the Tibetan Plateau during 2003—2010[J]. Journal of glaciology and cryopedology, 2015,36(6):1337-1344. ] | |
[12] |
Zheng W, Du J, Zhou X, et al. Vertical distribution of snow cover and its relation to temperature over the Manasi River Basin of Tianshan Mountains, northwest China[J]. Journal of Geographical Sciences, 2017,27(4):403-419.
doi: 10.1007/s11442-017-1384-6 |
[13] | Ahmad S, Israr M, Liu S, et al. Spatio-temporal trends in snow extent and their linkage to hydro-climatological and topographical factors in the Chitral River Basin (Hindukush, Pakistan)[J]. Geocarto International, 2018: 1-24. |
[14] |
Hasson S, Lucarini V, Khan M R, et al. Early 21st century snow cover state over the western river basins of the Indus River system[J]. Hydrology and Earth System Sciences, 2014,18(10):4077-4100.
doi: 10.5194/hess-18-4077-2014 |
[15] |
Tahir A A, Chevallier P, Arnaud Y, et al. Snow cover trend and hydrological characteristics of the Astore River Basin (western Himalayas) and its comparison to the Hunza Basin (Karakoram region)[J]. Science of the Total Environment, 2015,505:748-761.
doi: 10.1016/j.scitotenv.2014.10.065 |
[16] |
Tahir A A, Adamowski J F, Chevallier P, et al. Comparative assessment of spatiotemporal snow cover changes and hydrological behavior of the Gilgit, Astore and Hunza River basins (Hindukush-Karakoram-Himalaya region, Pakistan)[J]. Meteorology and Atmospheric Physics, 2016,128(6):793-811.
doi: 10.1007/s00703-016-0440-6 |
[17] | 何海迪, 李忠勤, 张明军. 基于 MODIS 数据中国天山积雪面积时空变化特征分析[J]. 干旱区地理, 2018,41(2):367-374. |
[ He Haidi, Li Zhongqin, Zhang Mingjun. Spatio-temporal variation analysis of snow cover area of Tianshan Mountains in China using MODIS data[J]. Arid Land Geography, 2018,41(2):367-374. ] | |
[18] |
Liu G, Wu R, Zhang Y, et al. The summer snow cover anomaly over the Tibetan Plateau and its association with simultaneous precipitation over the Mei-yu-baiu region[J]. Advances in Atmospheric Sciences, 2014,31(4):755-764.
doi: 10.1007/s00376-013-3183-z |
[19] |
Xiong C, Shi J, Cui Y, et al. Snowmelt pattern over high-mountain Asia detected from active and passive microwave remote sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2017,14(7):1096-1100.
doi: 10.1109/LGRS.2017.2698448 |
[20] | 曾小箕, 丁建丽, 鄢雪英, 等. 基于MODIS数据的土库曼斯坦山区积雪监测[J]. 干旱区地理, 2013,36(4):717-723. |
[ Zeng Xiaoji, Ding Jianli, Yan Xueying, et al. Snow monitoring using MODIS in Turkmenistan Mountains[J]. Arid Land Geography, 2013,36(4):717-723. ] | |
[21] | 姜康, 包刚, 乌兰图雅, 等. 基于MODIS数据的蒙古高原积雪时空变化研究[J]. 干旱区地理, 2019,42(4):782-789. |
[ Jiang Kang, Bao Gang, Wulan Tuya, et al. Spatiotemporal changes of snow cover in Mongolian Plateau based on MODIS data[J]. Arid Land Geography, 2019,42(4):782-789. | |
[22] | 张祥松, 米德生. 喀喇昆仑山现代冰川的研究[J]. 冰川冻土, 2012,4(3):15-28. |
[ Zhang Xiangsong, Mi Desheng. Study of present glaciers in the Karakoram[J]. Journal of Glaciology and Cryopedology 2012,4(3):15-28. ] | |
[23] | Hewitt K. Glaciers of the Karakoram Himalaya[M]. Encyclopedia of Snow, Ice and Glaciers. Dordrecht: Springer, 2014: 429-436. |
[24] | 孙本国, 毛炜峄, 冯燕茹, 等. 叶尔羌河流域气温,降水及径流变化特征分析[J]. 干旱区研究, 2006,23(2):203-209. |
[ Sun Benguo, Mao Weiyi, Feng Yanru, et al. Study on the change of air temperature, precipitation and runoff volume in the Yarkant River Basin[J]. Arid Zone Research, 2006,23(2):203-209. ] | |
[25] | Guo W, Liu S, Yao X, et al. The second glacier inventory dataset of China (Version 1.0)[DB]. Cold and Arid Regions Science Data Center at Lanzhou, 2014, doi: 10.3972/glacier.001.2013.db |
[26] | Liu T L, Yang Q, Qin R, et al. Climate change towards warming-wetting trend and its effects on runoff at the headwater region of the Yarkand River in Xinjiang[J]. Journal of Arid Land Resources and Environment, 2008,22(9):49-53. |
[27] |
Chen Y N, Xu C C, Hao X M, et al. Fifty-year climate change and its effect on annual runoff in the Tarim River Basin, China[J]. Quaternary International, 2009,208(1-2):53-61.
doi: 10.1016/j.quaint.2008.11.011 |
[28] | 王翠, 李生宇, 雷加强, 等. 叶尔羌河流域气候变化特征及趋势分析[J]. 干旱区资源与环境, 2018,32(1):155-160. |
[ Wang Cui, Li Shengyu, Lei Jiaqiang, et al. Regional climatic characteristics and its change trend in Yeerqiang River Basin[J]. Journal of Arid Land Resources and Environment, 2018,32(1):155-160. ] | |
[29] | Zhang X S, Zhou Y C. Study on the sudden flood of the glacial lake of the Yeerjing River in the Karakoram Mountains[M]. Beijing: Science Press, 1990. |
[30] | Qiu Y, Guo H, Chu D, et al. MODIS daily cloud-free snow cover products over Tibetan Plateau[J]. Science Data Bank, 2016, doi: 10.11922/csdata.170.2016.003 |
[31] |
Harris I, Jones P D, Osborn T J, et al. Updated high-resolution grids of monthly climatic observations: The CRU TS3.10 Dataset[J]. International Journal of Climatology, 2014,34(3):623-642.
doi: 10.1002/joc.3711 |
[32] |
Wolter K, Timlin M S. El Niño/southern oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI. ext)[J]. International Journal of Climatology, 2011,31(7):1074-1087.
doi: 10.1002/joc.2336 |
[33] |
Wang X, Xie H. New methods for studying the spatiotemporal variation of snow cover based on combination products of MODIS Terra and Aqua[J]. Journal of Hydrology, 2009,371(1-4):192-200.
doi: 10.1016/j.jhydrol.2009.03.028 |
[34] |
Rojo J, Rivero R, Romero-Morte J, et al. Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing[J]. International Journal of Biometeorology, 2017,61(2):335-348.
doi: 10.1007/s00484-016-1215-y pmid: 27492630 |
[35] |
Sanchez-Vazquez M J, Nielen M, Gunn G J, et al. Using seasonal-trend decomposition based on loess (STL) to explore temporal patterns of pneumonic lesions in finishing pigs slaughtered in England, 2005—2011[J]. Preventive Veterinary Medicine, 2012,104(1-2):65-73.
doi: 10.1016/j.prevetmed.2011.11.003 |
[36] | Cleveland R B, Cleveland W S. STL: A seasonal-trend decomposition procedure based on loess[J]. Journal of Official Statistics, 1990,6:3-33. |
[37] |
Hirsch R M, Slack J R. A nonparametric trend test for seasonal data with serial dependence[J]. Water Resources Research, 1984,20(6):727-732.
doi: 10.1029/WR020i006p00727 |
[38] |
Sen P K. Estimates of the regression coefficient based on Kendall’s tau[J]. Journal of the American Statistical Association, 1968,63(324):1379-1389.
doi: 10.1080/01621459.1968.10480934 |
[39] |
Deng H, Pepin N C, Liu Q, et al. Understanding the spatial differences in terrestrial water storage variations in the Tibetan Plateau from 2002 to 2016[J]. Climatic Change, 2018,151(3-4):379-393.
doi: 10.1007/s10584-018-2325-9 |
[40] |
Hamed K H. Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypojournal[J]. Journal of hydrology, 2008,349(3-4):350-363.
doi: 10.1016/j.jhydrol.2007.11.009 |
[41] |
Qin D H, Liu S Y, Li P J. Snow cover distribution, variability, and response to climate change in western China[J]. Journal of climate, 2006,19(9):1820-1833.
doi: 10.1175/JCLI3694.1 |
[42] | Kripalani R H, Kulkarni A, Sabade S S. El Niño southern oscillation, Eurasian snow cover and the Indian monsoon rainfall[J]. Proceedings of the Indian National Science Academy: Part A, 2001,67(3):361-368. |
[43] | Wu B, Wang J. Winter Arctic oscillation, Siberian high and east Asian winter monsoon[J]. Geophysical Research Letters, 2002,29(9):3-1-3-4. |
[44] | 徐丽娇, 李栋梁, 胡泽勇. 青藏高原积雪日数与高原季风的关系[J] . 高原气象, 2010,29(5):1093-1101. |
[ Xu Lijiao, Li Dongliang, Hu Zeyong. Relationship between the snow cover day and monsoon index in Tibetan Plateau[J]. Plateau Meteor, 2010,29(5):1093-1101. ] | |
[45] |
Birsan M V, Dumitrescu A. Snow variability in Romania in connection to large-scale atmospheric circulation[J]. International Journal of Climatology, 2014,34(1):134-144.
doi: 10.1002/joc.3671 |
[46] | 李培基. 高亚洲积雪监测[J]. 冰川冻土, 1996,18:105-114. |
[ Li Peiji. Monitoring snow cover on the High-Asia[J]. Journal of Glaciology and Geocryology, 1996,18:105-114. ] | |
[47] |
柯长青, 李培基. 青藏高原积雪分布与变化特征[J]. 地理学报, 1998,65(3):209-215.
doi: 10.11821/xb199803003 |
[ Ke Changqing, Li Peiji. Spatial and temporal characteristics of snow cover over the Qinghai-Xizang Plateau[J]. Acta Geographica Sinica, 1998,65(3):209-215. ]
doi: 10.11821/xb199803003 |
|
[48] | 王叶堂, 何勇, 侯书贵. 2000—2005年青藏高原积雪时空变化分析[J]. 冰川冻土, 2007,29(6):855-861. |
[ Wang Yetang, He Yong, Hou Shugui. Analysis of the temporal and spatial variations of snow cover over the Tibetan Plateau based on MODIS[J]. Journal of Glaciology and Geocryology, 2007,29(6):855-861. ] | |
[49] |
Wang T, Peng S, Ottle C, et al. Spring snow cover deficit controlled by intraseasonal variability of the surface energy fluxes[J]. Environmental Research Letters, 2015,10(2):024018, doi: 10.1088/1748-9326/10/2/024018
doi: 10.1088/1748-9326/10/2/024018 |
[50] |
Ye K, Lau N C. Influences of surface air temperature and atmospheric circulation on winter snow cover variability over Europe[J]. International Journal of Climatology, 2017,37(5):2606-2619.
doi: 10.1002/joc.2017.37.issue-5 |
[51] | Seager R, Kushnir Y, Nakamura J, et al. Northern Hemisphere winter snow anomalies: ENSO, NAO and the winter of 2009/10[J]. Geophysical Research Letters, 2010,37(14):L14703, doi: 10.1029/2010GL043830 |
[52] |
Ge Y, Gong G. North American snow depth and climate teleconnection patterns[J]. Journal of Climate, 2009,22(2):217-233.
doi: 10.1175/2008JCLI2124.1 |
[53] | Sobolowski S, Frei A. Lagged relationships between North American snow mass and atmospheric teleconnection indices[J]. International Journal of Climatology: A Journal of the Royal Meteorological Society, 2007,27(2):221-231. |
[54] |
刘颖, 倪允琪. ENSO对亚洲夏季风环流和中国夏季降水影响的诊断研究[J]. 气象学报, 1998,56(6):681-691.
doi: 10.11676/qxxb1998.063 |
[ Liu Ying, Ni Yunqi. Diagnostic research of the effects of ENSO on the Asian summer monsoon circulation and the summer precipitation in China[J]. Acta Meteorologica Sinica, 1998,56(6):681-691. ]
doi: 10.11676/qxxb1998.063 |
|
[55] |
Feng J, Chen W. Interference of the East Asian winter monsoon in the impact of ENSO on the East Asian summer monsoon in decaying phases[J]. Advances in Atmospheric Sciences, 2014,31(2):344-354.
doi: 10.1007/s00376-013-3118-8 |
[56] | 李天然, 张人禾, 温敏. ENSO对中国冬半年降水影响的不对称性及机制分析[J]. 热带气象学报, 2017,33(1):1-10. |
[ Li Tianran, Zhang Renhe, Wen Min. Impact of ENSO on the precipitation over China in winter half-years[J]. Journal of Tropical Meteorology, 2017,33(1):1-10. ] | |
[57] | Wallace J M, Rasmusson E M, Mitchell T P, et al. On the structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA[J]. Journal of Geophysical Research: Oceans, 1998,103(C7):14241-14259. |
[58] | Li X, Gao P, Li Q, et al. Muti-paths impact from climate change on snow cover in Tianshan Mountainous area of China[J]. Climate Change Research, 2016,12:303-312. |
[59] |
Tang Z, Wang X, Wang J, et al. Spatiotemporal variation of snow cover in Tianshan Mountains, Central Asia, based on cloud-free MODIS fractional snow cover product, 2001—2015[J]. Remote Sensing, 2017,9(10):1045.
doi: 10.3390/rs9101045 |
[60] |
Saavedra F A, Kampf S K, Fassnacht S R, et al. Changes in Andes snow cover from MODIS data, 2000—2016[J]. The Cryosphere, 2018,12(3):1027-1046.
doi: 10.5194/tc-12-1027-2018 |
[61] |
贾翔, 陈蜀江, 黄铁成, 等. 基于 MODIS 数据的新疆叶尔羌河流域山区积雪特征分析[J]. 冰川冻土, 2014,36(2):296-303.
doi: 10.7522/j.issn.1000-0240.2014.0036 |
[ Jia Xiang, Chen Shujiang, Huang Tiecheng, et al. Variability of snow cover in the mountain region of the Yarkant River Basin analyzed with MODIS data[J]. Journal of Glaciology and Geocryology, 2014,36(2):296-303. ]
doi: 10.7522/j.issn.1000-0240.2014.0036 |
|
[62] | Peng S, Piao S, Ciais P, et al. Change in winter snow depth and its impacts on vegetation in China[J]. Global Change Biology, 2010,16(11):3004-3013. |
[1] | 任才,龙爱华,於嘉闻,尹振良,张继. 气候与下垫面变化对叶尔羌河源流径流的影响[J]. 干旱区地理, 2021, 44(5): 1373-1383. |
[2] | 乌宁巴特, 刘新平, 马相平. 叶尔羌河流域土地生态脆弱性差异评价 [J]. 干旱区地理, 2020, 43(3): 849-858. |
|