干旱区地理 ›› 2023, Vol. 46 ›› Issue (7): 1039-1051.doi: 10.12118/j.issn.1000-6060.2022.511
黄鑫1(),焦黎1,马晓飞2,王勇辉1(),阿尔曼·阿布拉1
收稿日期:
2022-10-09
修回日期:
2022-12-29
出版日期:
2023-07-25
发布日期:
2023-08-03
通讯作者:
王勇辉(1977-),男,博士,教授,主要从事干旱区资源利用方面研究. E-mail: 作者简介:
黄鑫(1999-),女,硕士研究生,主要从事干旱区资源利用方面研究. E-mail: 基金资助:
HUANG Xin1(),JIAO Li1,MA Xiaofei2,WANG Yonghui1(),Aerman ABULA1
Received:
2022-10-09
Revised:
2022-12-29
Online:
2023-07-25
Published:
2023-08-03
摘要:
选取1960—2020年中亚126个气象站点逐日降水数据,基于RClimDex模型计算中亚8种极端降水指数,利用线性回归分析、Mann-Kendall法分析、相关性分析、小波变换和重标极差(R/S)分析,探究中亚极端降水事件特征。结果表明:(1)近60 a中亚极端降水事件频率和强度均明显增加,表征降水强度(SDII)变化倾向率为0.02 mm·d-1·(10a)-1。极端降水量指数中,强降水量(R95p)、单日最大降水量(Rx1day)、连续5 d最大降水量(Rx5day)、年总降水量(PRCPTOT)的变化倾向率分别为1.93 mm·(10a)-1、0.24 mm·(10a)-1、0.66 mm·(10a)-1和0.73 mm·(10a)-1。在极端降水日指数中,中雨日数(R10)、持续干燥日数(CDD)、持续湿润日数(CWD)变化倾向率分别为0.02 d·(10a)-1、-0.65 d·(10a)-1和0.08 d·(10a)-1。极端降水存在明显的空间差异性和高海拔依赖性,高原和山区附近极端降水事件频发。中亚极端降水周期特征为多峰谱型,具有准5 a短周期振荡、6~9 a中周期振荡和10~15 a长周期振荡。(2)极端降水指数与年总降水量具有良好的相关性,CWD对年总降水的贡献最大;太平洋年代际振荡(PDO)和北大西洋年代际振荡(AMO)对极端降水事件具有明显正相关性。R/S分析表明该地区极端降水特征未来持续可能性较大。研究结果可为中亚极端气候预测、自然环境保护、防灾减灾工作等提供科学依据。
黄鑫, 焦黎, 马晓飞, 王勇辉, 阿尔曼·阿布拉. 基于RClimDex模型的近60 a中亚极端降水事件变化特征[J]. 干旱区地理, 2023, 46(7): 1039-1051.
HUANG Xin, JIAO Li, MA Xiaofei, WANG Yonghui, Aerman ABULA. Change characteristics of extreme precipitation events in Central Asia in recent 60 years based on RClimDex model[J]. Arid Land Geography, 2023, 46(7): 1039-1051.
表2
中亚极端降水指数年代际变化"
年代 | PRCPTOT/mm | SDII/mm·d-1 | Rx5day/mm | Rx1day/mm | R95p/mm | R10/d | CWD/d | CDD/d |
---|---|---|---|---|---|---|---|---|
20世纪60年代 | 246.631 | 4.620 | 28.043 | 22.541 | 45.020 | 6.004 | 2.874 | 93.503 |
20世纪70年代 | 239.754 | 4.621 | 30.115 | 23.531 | 44.682 | 5.521 | 2.802 | 95.370 |
20世纪80年代 | 319.963 | 4.642 | 30.464 | 23.692 | 46.821 | 5.552 | 2.661 | 100.741 |
20世纪90年代 | 246.882 | 4.802 | 32.046 | 24.581 | 51.216 | 5.730 | 3.080 | 90.642 |
21世纪初 | 269.637 | 4.583 | 30.353 | 23.870 | 51.656 | 5.854 | 3.101 | 93.623 |
21世纪10年代 | 248.254 | 4.810 | 32.350 | 24.000 | 53.817 | 5.973 | 3.243 | 91.131 |
表3
1960—2020年极端降水指数与大气指数和年总降水量的相关性分析"
指数 | 相关系数(r) | |||||||
---|---|---|---|---|---|---|---|---|
CDD | CWD | PRCPTOT | R10 | R95p | SDII | Rx5day | Rx1day | |
AO | 0.117 | 0.141 | -0.094 | -0.269* | 0.016 | -0.033 | 0.068 | 0.019 |
AMO | -0.294* | 0.607** | 0.032 | 0.432** | 0.528** | 0.212 | 0.219 | 0.065 |
NAO | 0.072 | 0.061 | 0.004 | -0.129 | 0.031 | 0.142 | 0.194 | 0.171 |
PDO | -0.100 | 0.102 | 0.297* | 0.235 | 0.329** | 0.426** | 0.520** | 0.511** |
SOI | 0.089 | -0.098 | -0.132 | -0.203 | -0.122 | -0.199 | -0.244 | -0.330** |
EA | 0.156 | -0.408** | -0.112 | -0.186 | -0.434** | -0.195 | -0.308* | -0.117 |
ONI | -0.113 | 0.097 | 0.108 | 0.297* | 0.089 | 0.166 | 0.183 | 0.238 |
PRCPTOT | -0.131 | 0.601** | - | 0.192 | 0.265* | 0.357** | 0.313* | 0.331** |
[1] | 田亚林. 中亚地区极端降水时空分布及重现期分析[D]. 兰州: 兰州交通大学, 2020. |
[Tian Yalin. Research on temporal-spatial variations of extreme precipitation in Central Asia and its return period[D]. Lanzhou: Lanzhou Jiaotong University, 2020.] | |
[2] |
Alexander L V, Zhang X, Peterson T C, et al. Global observed changes in daily climate extremes of temperature and precipitation[J]. Journal of Geophysical Research Atmospheres, 2006, 111(D5): D05109, doi: 10.1029/2005JD006290.
doi: 10.1029/2005JD006290 |
[3] |
Zhang Q, Li J, Singh V P, et al. Spatio-temporal relations between temperature and precipitation regimes: Implications for temperature-induced changes in the hydrological cycle[J]. Global and Planetary Change, 2013, 111: 57-76.
doi: 10.1016/j.gloplacha.2013.08.012 |
[4] | 韩振宇, 陆波, 石英, 等. IPCC AR6报告关于气候变化影响和风险主要结论的解读[J]. 气候变化研究(自然科学版), 2022, 18(4): 389-394. |
[Han Zhenyu, Lu Bo, Shi Ying, et al. Interpretation of the IPCC AR6 on the impacts and risks of climate change[J]. Climate Change Research (Natural Science Edition), 2022, 18(4): 389-394.] | |
[5] |
Zhou T. New physical science behind climate change: What does IPCC AR6 tell us?[J]. Innovation (Camb), 2021, 2(4): 100173, doi: 10.1016/j.xinn.2021.100173.
doi: 10.1016/j.xinn.2021.100173 |
[6] |
Zarekarizi M, Rana A, Moradkhani H. Precipitation extremes and their relation to climatic indices in the Pacific northwest USA[J]. Climate Dynamics, 2018, 50(11-12), doi: 10.1007/s00382-017-3888-2.
doi: 10.1007/s00382-017-3888-2 |
[7] |
顾西辉, 张强, 张生. 1961—2010年中国农业洪旱灾害时空特征成因及影响[J]. 地理科学, 2016, 36(3): 439-447.
doi: 10.13249/j.cnki.sgs.2016.03.016 |
[Gu Xihui, Zhang Qiang, Zhang Sheng. Spatio-temporal properties of flood/drought hazards and possible causes and impacts in 1961—2010[J]. Earth Science, 2016, 36(3): 439-447.]
doi: 10.13249/j.cnki.sgs.2016.03.016 |
|
[8] |
Katz R W, Brown B G. Extreme events in a changing climate: Variability is more important than averages[J]. Climatic Change, 1992, 21(3): 289-302.
doi: 10.1007/BF00139728 |
[9] |
Stone D A, Weaver A J, Zwiers F W. Trends in Canadian precipitation intensity[J]. Atmosphere-Ocean, 2000, 38(2): 321-347.
doi: 10.1080/07055900.2000.9649651 |
[10] |
Aguilar E, Peterson T C, Obando P R, et al. Changes in precipitation and temperature extremes in Central America and northern South America, 1961—2003[J]. Journal of Geophysical Research Atmospheres: JGR, 2005, 110(D23): D23107, doi: 10.1029/2005JD006119.
doi: 10.1029/2005JD006119 |
[11] | 戴声佩, 罗红霞, 李茂芬, 等. 1959—2016年华南地区极端降水事件变化特征[J]. 中国农业资源与区划, 2022, 43(3): 128-142. |
[Dai Shengpei, Luo Hongxia, Li Maofen, et al. Extreme precipitation events variations in southern China from 1959 to 2016[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2022, 43(3): 128-142.] | |
[12] | 何慧, 陆虹, 陈思蓉. 1961—2010年华南极端降水日数的时空变化特征[J]. 安徽农业科学, 2012, 40(12): 7256-7259, 7276. |
[He Hui, Lu Hong, Chen Sirong. Temporal-spatial variation characteristics of the extreme precipitation days over south China from 1961 to 2010[J]. Journal of Anhui Agricultural Sciences, 2012, 40(12): 7256-7259, 7276.] | |
[13] |
李志, 郑粉莉, 刘文兆. 1961—2007年黄土高原极端降水事件的时空变化分析[J]. 自然资源学报, 2010, 25(2): 291-299.
doi: 10.11849/zrzyxb.2010.02.013 |
[Li Zhi, Zheng Fenli, Liu Wenzhao. Analyzing the spatial-temporal changes of extreme precipitation events in the Loess Plateau from 1961 to 2007[J]. Journal of Natural Resources, 2010, 25(2): 291-299.]
doi: 10.11849/zrzyxb.2010.02.013 |
|
[14] | 王少平, 姜逢清, 吴小波, 等. 1961—2010年西北干旱区极端降水指数的时空变化分析[J]. 冰川冻土, 2014, 36(2): 318-326. |
[Wang Shaoping, Jiang Fengqing, Wu Xiaobo, et al. Temporal and spatial variability of the extreme precipitation indices over the arid regions in northwest China from 1961 to 2010[J]. Journal of Glaciology and Geocryology, 2014, 36(2): 318-326.] | |
[15] |
马伟东, 刘峰贵, 周强, 等. 1961—2017年青藏高原极端降水特征分析[J]. 自然资源学报, 2020, 35(12): 3039-3050.
doi: 10.31497/zrzyxb.20201218 |
[Ma Weidong, Liu Fenggui, Zhou Qiang, et al. Characteristics of extreme precipitation over the Qinghai-Tibet Plateau from 1961 to 2017[J]. Journal of Natural Resources, 2020, 35(12): 3039-3050.]
doi: 10.31497/zrzyxb.20201218 |
|
[16] |
Lioubimtseva E, Henebry C M. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations[J]. Journal of Arid Environments, 2009, 73(11): 963-977.
doi: 10.1016/j.jaridenv.2009.04.022 |
[17] |
Li Z, Chen Y N, Fang G H, et al. Multivariate assessment and attribution of droughts in Central Asia[J]. Scientific Reports, 2017, 7(1): 1316, doi: 10.1038/s41598-017-01473-1.
doi: 10.1038/s41598-017-01473-1 pmid: 28465559 |
[18] |
Schiemann R, Lüthi D, Vidale P L, et al. The precipitation climate of Central Asia[J]. International Journal of Climatology, 2008, 28(3): 295-314.
doi: 10.1002/(ISSN)1097-0088 |
[19] |
Aizen E M, Aizen V B, Melack J M, et al. Precipitation and atmospheric circulation patterns at mid-latitudes of Asia[J]. International Journal of Climatology, 2001, 21(5): 535-556.
doi: 10.1002/(ISSN)1097-0088 |
[20] |
Bothe O, Fraedrich K, Zhu X H. Precipitation climate of Central Asia and the large-scale atmospheric circulation[J]. Theoretical and Applied Climatology, 2012, 108(3-4): 345-354.
doi: 10.1007/s00704-011-0537-2 |
[21] |
Dong W H, Lin Y L, Wright J S, et al. Summer rainfall over the southwestern Tibetan Plateau controlled by deep convection over the Indian subcontinent[J]. Science Foundation in China, 2016, 7: 10925, doi: 10.1038/ncomms10925.
doi: 10.1038/ncomms10925 |
[22] | 韩云环, 马柱国, 杨庆, 等. 增暖背景下新疆昼夜降水的变化特征[J]. 气候与环境研究, 2014(6): 763-772. |
[Han Yunhuan, Ma Zhuguo, Yang Qing, et al. Characteristics of diurnal precipitation in Xinjiang under warming background[J]. Climatic and Environmental Research, 2014(6): 763-772.] | |
[23] | 刘晶, 周玉淑, 杨莲梅, 等. 伊犁河谷一次极端强降水事件水汽特征分析[J]. 大气科学, 2019, 43(5): 959-974. |
[Liu Jing, Zhou Yushu, Yang Lianmei, et al. A diagnostic study of water vapor during an extreme precipitation event in the Yili River valley[J]. Atmospheric Sciences, 2019, 43(5): 959-974.] | |
[24] | 谢泽明, 周玉淑, 杨莲梅. 新疆降水研究进展综述[J]. 暴雨灾害, 2018, 37(3): 204-212. |
[Xie Zeming, Zhou Yushu, Yang Lianmei. Review of study on precipitation in Xinjiang[J]. Rainstorm Disaster, 2018, 37(3): 204-212.] | |
[25] |
Hu Z Y, Zhou Q M, Chen X, et al. Variations and changes of annual precipitation in Central Asia over the last century[J]. International Journal of Climatology, 2017, 37: 157-170.
doi: 10.1002/joc.2017.37.issue-S1 |
[26] |
Zhang M, Chen Y N, Shen Y J, et al. Changes of precipitation extremes in arid Central Asia[J]. Quaternary International, 2017, 436: 16-27.
doi: 10.1016/j.quaint.2016.12.024 |
[27] |
Wang H J, Chen Y N, Chen Z S, et al. Spatial distribution and temporal trends of mean precipitation and extremes in the arid region, northwest of China, during 1960—2010[J]. Hydrological Processes, 2013, 27(12): 1807-1818.
doi: 10.1002/hyp.v27.12 |
[28] | 常石巧. 中亚干旱区极端降水事件的水汽来源及物理机制初探[D]. 兰州: 兰州大学, 2019. |
[Chang Shiqiao. Preliminary study on moisture sources and physical mechanism of extreme precipitation events in the arid Central Asia[D]. Lanzhou: Lanzhou University, 2019.] | |
[29] | 张曼. 中亚地区气候极值时空变化特征及影响因素研究[D]. 北京: 中国科学院大学, 2018. |
[Zhang Man. Analysis of the characteristics on spatial-temporal variabilities and influence factors of climate extremes in Central Asia[D]. Beijing: University of Chinese Academy of Sciences, 2018.] | |
[30] | 陆晴, 刘根林, 闫冰, 等. 气候变暖背景下中亚地区极端降水事件变化及其对植被覆盖的影响[J]. 水土保持研究, 2021, 28(4): 226-235, 243. |
[Lu Qing, Liu Genlin, Yan Bing, et al. Variation of extreme precipitation events and their impacts on vegetation coverage in Central Asia under climate warming[J]. Research of Soil and Water Conservation, 2021, 28(4): 226-235, 243.] | |
[31] | 江洁. 中亚降水长期变化分析和归因研究[D]. 北京: 中国科学院大学, 2021. |
[Jiang Jie. Analysis and attribution of long-term precipitation change in Central Asia[D]. Beijing: University of Chinese Academy of Sciences, 2021.] | |
[32] | 姚俊强, 曾勇, 李建刚, 等. 中亚区域干湿及极端降水研究综述[J]. 气象科技进展, 2020, 10(4): 7-14. |
[Yao Junqiang, Zeng Yong, Li Jiangang, et al. A review of dry-wet climate change and extreme precipitation in Central Asia[J]. Advances in Meteorological Science and Technology, 2020, 10(4): 7-14.] | |
[33] | 陈昌春, 张余庆, 王腊春, 等. 基于RClimDex模型的江西省极端降水时空变化研究[J]. 中国农村水利水电, 2013(11): 41-45. |
[Chen Changchun, Zhang Yuqing, Wang Lachun, et al. Research on the change of extreme precipitation in Jiangxi Province based on RClimDex model[J]. China Rural Water and Hydropower, 2013(11): 41-45.] | |
[34] | 高丹阳, 游如玥, 朱虹, 等. 基于RClimDex模型的四川省极端降水时空变化特征分析[J]. 水电能源科学, 2021, 39(8): 10-13. |
[Gao Danyang, You Ruyue, Zhu Hong, et al. Spatiotemporal variation characteristics of extreme precipitation in Sichuan Province based on RClimDex model[J]. Water Resources and Power, 2021, 39(8): 10-13.] | |
[35] | 黎晓东, 王永强, 刘万, 等. 三江源典型地区1967—2019年降水时空演变特征[J]. 长江科学院院报, 2022, 39(1): 16-22. |
[Li Xiaodong, Wang Yongqiang, Liu Wan, et al. Temporal and spatial evolution characteristics of precipitation in typical areas at the source of three rivers from 1967 to 2019[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(1): 16-22.] | |
[36] |
魏军, 李婷, 胡会芳, 等. 基于RClimDex模型的石家庄市极端降水时空变化特征[J]. 干旱气象, 2016, 34(4): 623-630.
doi: 10.11755/j.issn.1006-7639(2016)-04-0623 |
[Wei Jun, Li Ting, Hu Huifang, et al. Temporal and spatial variation characteristics of extreme precipitation based on RClimDex model in Shijiazhuang during 1972—2014[J]. Journal of Arid Meteorology, 2016, 34(4): 623-630.]
doi: 10.11755/j.issn.1006-7639(2016)-04-0623 |
|
[37] | 王兴梅, 张勃, 戴声佩, 等. 甘肃省黄土高原区夏季极端降水的时空特征[J]. 中国沙漠, 2011, 31(1): 223-229. |
[Wang Xingmei, Zhang Bo, Dai Shengpei, et al. Spatial and temporal characteristics of summer extreme precipitation in Loess Plateau of Gansu Province China[J]. Journal of Desert Research, 2011, 31(1): 223-229.] | |
[38] | 张秀娟, 李传浩, 卜庆雷, 等. 1961年—2016年鲁中地区极端降水时空变化特征及与ENSO关系研究[J]. 环境科学与管理, 2022, 47(3): 67-72. |
[Zhang Xiujuan, Li Chuanhao, Bu Qinglei, et al. Spatial-temporal variation characteristics of extreme precipitation and its relationship with ENSO in central Shandong from 1961 to 2016[J]. Environmental Science and Management, 2022, 47(3): 67-72.] | |
[39] | 白宇轩, 杜军, 王挺, 等. 1971—2020年藏东南极端降水指数的时空变化特征[J]. 高原山地气象研究, 2022, 42(3): 31-40. |
[Bai Yuxuan, Du Jun, Wang Ting, et al. Spatio-temporal change of extreme precipitation index of southeastern Tibet from 1971 to 2020[J]. Plateau and Mountain Meteorology Research, 2022, 42(3): 31-40.] | |
[40] |
潘雅婧, 王仰麟, 彭建, 等. 基于小波与R/S方法的汉江中下游流域降水量时间序列分析[J]. 地理研究, 2012, 31(5): 811-820.
doi: 10.11821/yj2012050005 |
[Pan Yajing, Wang Yanglin, Peng Jian, et al. Precipitation change in middle and lower reaches of Hanjiang River: Based on wavelet analysis and R/S analysis[J]. Geographical Research, 2012, 31(5): 811-820.]
doi: 10.11821/yj2012050005 |
|
[41] | 黄勇, 周志芳, 王锦国, 等. R/S分析法在地下水动态分析中的应用[J]. 河海大学学报, 2002, 30(1): 83-87. |
[Huang Yong, Zhou Zhifang, Wang Jinguo, et al. Application of R/S method to dynamic groundwater analysis[J]. Journal of Hohai University, 2002, 30(1): 83-87.] | |
[42] | 于延胜, 陈兴伟. R/S和Mann-Kendall法综合分析水文时间序列未来的趋势特征[J]. 水资源与水工程学报, 2008(3): 41-44. |
[Yu Yansheng, Chen Xingwei. Analysis of future trend characteristics of hydrological time series based on R/S and Mann-Kendall methods[J]. Journal of Water Resources and Water Engineering, 2008(3): 41-44.] | |
[43] | 陈昭, 梁静溪. 赫斯特指数的分析与应用[J]. 中国软科学, 2005(3): 134-138. |
[Chen Zhao, Liang Jingxi. The analysis and application of Hurst exponent[J]. China Soft Science, 2005(3): 134-138.] | |
[44] |
Zhou Y K. Characterizing the spatio-temporal dynamics and variability in climate extremes over the Tibetan Plateau during 1960—2012[J]. Journal of Resources and Ecology, 2019, 10(4): 397-414.
doi: 10.5814/j.issn.1674-764x.2019.04.007 |
[45] |
Liu Y R, Liu Y P, Yang X, et al. Development of an integrated multivariate trend-frequency analysis method: Spatial-temporal characteristics of climate extremes under global warming for Central Asia[J]. Environmental Research, 2021, 195: 110859, doi: 10.1016/j.envres.2021.110859.
doi: 10.1016/j.envres.2021.110859 |
[46] | 陈亚宁, 李稚, 方功焕. 中亚天山地区关键水文要素变化与水循环研究进展[J]. 干旱区地理, 2022, 45(1): 1-8. |
[Chen Yaning, Li Zhi, Fang Gonghuan. Changes of key hydrological elements and research progress of water cycle in the Tianshan Mountains, Central Asia[J]. Arid Land Geography, 2022, 45(1): 1-8.] | |
[47] | 高洁, 赵勇, 姚俊强, 等. 气候变化背景下中亚干旱区大气水分循环要素时空演变[J]. 干旱区研究, 2022, 39(5): 1371-1384. |
[Gao Jie, Zhao Yong, Yao Junqiang, et al. Spatiotemporal evolution of atmospheric water cycle factors in arid regions of Central Asia under climate change[J]. Arid Zone Research, 2022, 39(5): 1371-1384.] | |
[48] |
李奇虎, 马庆勋. 1960—2010年西北干旱区极端降水特征研究[J]. 地理科学, 2014, 34(9): 1134-1138.
doi: 10.13249/j.cnki.sgs.2014.09.1134 |
[Li Qihu, Ma Qingxun. Extreme pecipitation features of arid regions in northwest of China[J]. Geographic Science, 2014, 34(9): 1134-1138.]
doi: 10.13249/j.cnki.sgs.2014.09.1134 |
|
[49] | 闫炎, 赵昕奕, 周力平. 近50年中国西北地区干湿演变的时空特征及其可能成因探讨[J]. 干旱区资源与环境, 2010, 24(4): 38-44. |
[Yan Yan, Zhao Xinyi, Zhou Liping. The temporal and spatial characteristics of aridity and wetness variation in northwest China during recent 50 years and the factor analysis[J]. Journal of Arid Land Resources and Environment, 2010, 24(4): 38-44.] | |
[50] | 戴新刚, 汪萍, 张凯静. 近60年新疆降水趋势与波动机制分析[J]. 物理学报, 2013, 62(12): 1-11. |
[Dai Xingang, Wang Ping, Zhang Kaijing. A study on precipitation trend and fluctuation mechanism in northwestern China over the past 60 years[J]. Acta Physica Sinica, 2013, 62(12): 1-11.] | |
[51] | 杨莲梅, 关学锋, 张迎新. 亚洲中部干旱区降水异常的大气环流特征[J]. 干旱区研究, 2018, 35(2): 249-259. |
[Yang Lianmei, Guan Xuefeng, Zhang Yingxin. Atmospheric circulation characteristics of precipitation anomaly in arid regions in Central Asia[J]. Arid Zone Research, 2018, 35(2): 249-259.] | |
[52] |
Huang W, Chen J H, Zhang X J, et al. Definition of the core zone of the “westerlies-dominated climatic regime”, and its controlling factors during the instrumental period[J]. Science China (Earth Sciences), 2015, 58(5): 676-684.
doi: 10.1007/s11430-015-5057-y |
[53] | Feng S, Hu Q. How the North Atlantic multidecadal oscillation may have influenced the Indian summer monsoon during the past two millennia[J]. Geophysical Research Letters, 2008, 35(1): 548-562. |
[54] |
Wei H, Chen F H, Feng S, et al. Interannual precipitation variations in the mid-latitude Asia and their association with large-scale atmospheric circulation[J]. Chinese Science Bulletin, 2013, 58(1): 3962-3968.
doi: 10.1007/s11434-013-5970-4 |
[55] |
Wei W, Zhang R H, Wen M, et al. Impact of Indian summer monsoon on the South Asian High and its influence on summer rainfall over China[J]. Climate Dynamics, 2014, 43(5-6): 1257-1269.
doi: 10.1007/s00382-013-1938-y |
[56] |
Jiang J, Zhou T, Chen X, et al. Central Asian precipitation shaped by the tropical Pacific decadal variability and the Atlantic multidecadal variability[J]. Journal of Climate, 2021, 34(18): 7541-7553.
doi: 10.1175/JCLI-D-20-0905.1 |
[57] |
Peng D D, Zhou T J, Zhang L X, et al. Detecting human influence on the temperature changes in Central Asia[J]. Climate Dynamics, 2019, 53: 4553-4568.
doi: 10.1007/s00382-019-04804-2 |
[58] |
张强, 韩永翔, 宋连春. 全球气候变化及其影响因素研究进展综述[J]. 地球科学进展, 2005, 20(9): 990-998.
doi: 10.11867/j.issn.1001-8166.2005.09.0990 |
[Zhang Qiang, Han Yongxiang, Song Lianchun. The summarize of development of global climate change and its effect factors[J]. Advances in Earth Science, 2005, 20(9): 990-998.]
doi: 10.11867/j.issn.1001-8166.2005.09.0990 |
|
[59] |
Yang P, Zhang Y Y, Xia J, et al. Investigation of precipitation concentration and trends and their potential drivers in the major river basins of Central Asia[J]. Atmospheric Research, 2020, 245: 105128, doi: 10.1016/j.atmosres.2020.105128.
doi: 10.1016/j.atmosres.2020.105128 |
[60] |
Shi Z G, Zhou P, Li X Z, et al. Distinct Holocene precipitation trends over arid Central Asia and linkages to westerlies and Asian monsoon[J]. Quaternary Science Reviews, 2021, 266: 107055, doi: 10.1016/j.quascirev.2021.107055.
doi: 10.1016/j.quascirev.2021.107055 |
[61] | 周天军, 吴波, 郭准, 等. 东亚夏季风变化机理的模拟和未来变化的预估:成绩和问题、机遇和挑战[J]. 大气科学, 2018, 42(4): 902-934. |
[Zhou Tianjun, Wu Bo, Guo Zhun, et al. A review of East Asian summer monsoon simulation and projection: Achievements and problems, oportunities and challenges[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(4): 902-934.] |
[1] | 江岳坤, 石鹏娟. 中国市域城乡收入差距时空演化及影响因素[J]. 干旱区地理, 2024, 47(1): 147-157. |
[2] | 刘文丽, 陈樟, 赵勇, 梁雨欣. 中亚5月土壤湿度异常对6月降水的影响[J]. 干旱区地理, 2024, 47(1): 38-47. |
[3] | 史维良, 车璐阳, 李涛. 陕西省汛期极端降水概率分布及综合危险性评估[J]. 干旱区地理, 2023, 46(9): 1407-1417. |
[4] | 牛怡莹, 李春兰, 王军, 许瀚卿, 刘青. 内蒙古ERA5再分析降水数据性能评估与极端降水时空特征分析[J]. 干旱区地理, 2023, 46(9): 1418-1431. |
[5] | 李乐乐, 钞锦龙, 赵德一, 李浩杰, 吴林栋, 李佳骏. 1957—2019年山西省暴雨时空分布特征与暴雨灾害风险评估[J]. 干旱区地理, 2023, 46(5): 689-699. |
[6] | 潘雪, 关宇淇, 潘占东, 刘杰, 蔡立群, 董博, 杜健. 干旱区耕地质量等级时空变化及其评价——以西宁市为例[J]. 干旱区地理, 2023, 46(5): 793-803. |
[7] | 周海涛, 马钰松, 樊亚宇, 宁小莉. 内蒙古红色旅游资源空间分布及可达性分析[J]. 干旱区地理, 2023, 46(5): 814-822. |
[8] | 丁华,廖文强,段丰浩,杨望暾. 陕西省丹霞地貌景观特征、空间分布与形成机理初探[J]. 干旱区地理, 2023, 46(4): 527-538. |
[9] | 芦雄英, 刘贤德, 马瑞, 赵维俊, 敬文茂, 何晓玲, 赵长兴. 祁连山排露沟流域青海云杉林更新特征对地形因子的响应[J]. 干旱区地理, 2023, 46(4): 604-613. |
[10] | 闫新杰, 孙慧, 辛龙. 新疆资源型企业的空间分布与区位选择[J]. 干旱区地理, 2023, 46(4): 678-687. |
[11] | 马晓敏, 张志斌, 郭倩倩, 吴志祥, 冯雪丽. 中国科普教育基地空间分布、类型结构及影响因素[J]. 干旱区地理, 2023, 46(11): 1879-1890. |
[12] | 刘尊方, 雷浩川, 盛海彦. 基于XGBoost模型的湟水流域耕地土壤养分遥感反演[J]. 干旱区地理, 2023, 46(10): 1643-1653. |
[13] | 夏怀霞, 梁涵玮, 陈爽, 王倩, 王慎敏. 中亚地区土地与人口城镇化时空耦合特征[J]. 干旱区地理, 2023, 46(1): 115-126. |
[14] | 卢星,赵勇. 北非副热带高压与中亚夏季降水的关系[J]. 干旱区地理, 2022, 45(4): 1050-1060. |
[15] | 张仲福. 黄河流域甘肃段地质遗迹空间区划及可持续开发利用策略[J]. 干旱区地理, 2022, 45(4): 1235-1243. |
|