收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2015, Vol. 38 ›› Issue (6): 1234-1240.

• 地球信息科学 • 上一篇    下一篇

中国比辐射率空间分布特征分析

姚镇海1, 邱新法2, 施国萍3, 张喜亮4   

  1. 1. 南京信息工程大学地理与遥感学院, 江苏南京 210044;
    2. 南京信息工程大学应用气象学院, 江苏南京 210044;
    3. 南京信息工程大学地理与遥感学院地理信息系, 江苏南京 210044;
    4. 浙江省湖州市气象局, 浙江湖州 313000
  • 收稿日期:2015-02-18 修回日期:2015-05-20 出版日期:2015-11-25
  • 通讯作者: 邱新法,男,博士研究生,教授(博士生导师),主要从事气候资源开发利用,气象灾害防灾减灾技术方面的研究E-mail:xfqiu135@nuist.edu.cn
  • 作者简介:姚镇海,男,硕士研究生,主要从事气候资源开发利用技术方面的研究.E-mail:18256589121@163.com
  • 基金资助:

    国家自然科学基金项目(编号:49701007);湖州市公益性技术应用研究(重点)项目(2013GZ10)

Emissivity spatial distribution characteristics over China region

YAO Zhen-hai1, QIU Xing-fa2, SHI Guo-ping3, ZHANG Xi-liang4   

  1. 1. School of Geography and Remote Sensing, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China;
    2. College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China;
    3. GIS Department, School of Geography and Remote Sensing, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China;
    4. Huzhou Municipal Meteorological Bureau, Huzhou 313000, Zhejiang, China
  • Received:2015-02-18 Revised:2015-05-20 Online:2015-11-25

摘要: 使用2003-2013年MOD/MYD11C3地表比辐射率光谱数据、MOD/MYD13C2植被指数光谱数据,合成全国各月地表比辐射率、NDVI(Normalized Difference Vegetation Index)。基于DEM数据分析比辐射率与NDVI随海拔、坡向的变化规律。结果表明:(1)比辐射率低值段(0.960~0.970)主要分布在我国西北荒漠地区,面积比例全年变化不显著,代表了干燥裸土下低比辐射率的特征;中值段(0.970~0.975)分布于我国大部分植被覆盖地区,面积比例夏高冬低,代表植被覆盖下混合像元的中比辐射率特征;高值段(0.975~0.980)位于我国部分高海拔和高纬度地区,面积比例冬高夏低,代表冰雪与植被混合像元的高比辐射率特征。(2)比辐射率与NDVI随坡向变化呈明显的"双峰双谷"分布。东南坡、西坡为峰值,最大值位于东南坡;南坡、北坡为谷值,最小值位于北坡。两者变化一致性很高。受不同坡向太阳方位角下的地形敏感性与植被覆盖综合影响,比辐射率表现出随坡向的峰谷变化规律。(3)随海拔升高,比辐射率呈垂直地带性变化。存在3个下降区:250 m~1250 m、2500 m~3000 m和4750 m~6000 m;3个上升区:1250 m~2500 m、3000 m~4750 m和6000 m~6500 m。这与NDVI随海拔变化特征类似,反映垂直下垫面植被变化对比辐射率空间分布的影响。

关键词: 比辐射率, NDVI, 遥感, 空间分布

Abstract: MODIS monthly surface emissivity spectrum database(MOD11C3/MYD11C3),monthly surface vegetation index spectrum database(MOD13C2/MYD13C2)were used to synthesize monthly emissivity and NDVI(Normalized Difference Vegetation Index)products from 2003 to 2013. Monthly emissivity and NDVI distribution characteristics with altitude and aspect were also discussed by using national basic geographical data (China terrain 1:1000000 DEM,vector boundary data). Results show as follows:(1)Area ratio of different segments indicates seasonal variation of emissivity. Low section(0.960-0.970)locates in the northwest desert region of China,representing the low emissivity of bare soil,proportion of that area does not change significantly throughout months. Middle section(0.970-0.975)covers most vegetated areas,representing the emissivity of vegetated mixed pixel. Proportion of the area is high in summer while low in winter. High section(0.975-0.980) covers parts of the high altitude mountainous or high latitude region,representing a high emissivity of mixed snow and vegetation. Proportion of the area is high in winter while low in summer.(2)A "Twin Peaks double dip" feature shows when emissivity and NDVI changes with azimuth. Peak values locate on southeast and west aspect, the maximum value locates on southeast. While dip values locate on south and north aspect,the minimum value locates on north. Both changes with high consistency.(3)An obvious vertical zonal distribution shows that emissivity changes with increasing altitude. Emissivity decreases during 250-1250 m,2500-3000 m and 4750-6000 m,while increases during 1250-2500 m,3000-4750 m and 6000-6500 m. Emissivity shows a high consistency with NDVI below 6000 m,which depends on the vegetation coverage. While above 6000 m,it depends on bare soil covered with snow. Innovations of this research are summarized as follows:(1)The latest remote sensed data were used to synthesize monthly mean emissivity over China region in 11 years(2003-2013). Synthesis results clearly reflect the variation characteristics of surface physical properties.(2)Analysis of monthly emissivity distribution with the change of geographical terrain elements over China region has been conducted under both vertical characteristic:elevation,and horizontal characteristic:aspect conditions.

Key words: emissivity, NDVI, remote sensing, spatial distribution

中图分类号: 

  • TP79