干旱区地理 ›› 2023, Vol. 46 ›› Issue (5): 834-845.doi: 10.12118/j.issn.1000-6060.2022.383
收稿日期:
2022-08-03
修回日期:
2022-09-11
出版日期:
2023-05-25
发布日期:
2023-06-05
通讯作者:
张凯莉(1993-),女,博士,主要从事生态规划和生态系统评估等方面的研究. E-mail: 202010238@stumail.nwu.edu.cn
作者简介:
董洁芳(1984-),女,博士,副教授,主要从事区域经济与生态旅游开发研究. E-mail: 基金资助:
DONG Jiefang1(),ZHANG Kaili2(),QU Xueshu1,RUAN Zheng3
Received:
2022-08-03
Revised:
2022-09-11
Online:
2023-05-25
Published:
2023-06-05
摘要:
生态福利绩效(EWP)的提升是生态文明建设的必然选择,对区域可持续发展具有重要意义。从生态福利视角出发,构建指标体系,基于面板数据,采用非期望产出超效率SBM模型对2006—2019年黄河流域59个地级城市EWP进行测算,运用空间探索方法和时空地理加权回归(GTWR)模型对流域EWP的空间分布特征及驱动因素进行解析。结果表明:(1) 黄河流域城市EWP值普遍较低,平均存在19.7%的提升空间。(2) 黄河流域城市EWP存在显著正向空间自相关,“热点”高-高型城市主要分布在人口密度较低的上游地区;“冷点”低-低型多为黄河中下游经济发展较快、人口相对集中的城市。(3) 降水量、教育发展水平和产业结构水平对城市EWP的提升具有显著促进作用;人口密度、经济强度及金融发展水平对城市EWP的改善具有明显抑制作用。其中,降水量、教育发展水平和人口密度对城市EWP的边际效应较大。研究结果弥补了EWP影响因子“时-空”非平稳性分析的不足,可为有关部门制定城市EWP政策提供参考依据。
董洁芳, 张凯莉, 屈学书, 阮征. 黄河流域城市生态福利绩效测算及驱动因素研究[J]. 干旱区地理, 2023, 46(5): 834-845.
DONG Jiefang, ZHANG Kaili, QU Xueshu, RUAN Zheng. Measurement and influencing factors of ecological well-being performance of cities in Yellow River Basin[J]. Arid Land Geography, 2023, 46(5): 834-845.
表3
2006—2019年黄河流域城市EWP"
城市 | 2006年 | 2008年 | 2010年 | 2012年 | 2014年 | 2016年 | 2019年 | 均值 | 增长率/% |
---|---|---|---|---|---|---|---|---|---|
定西 | 6.682 | 2.168 | 3.357 | 4.457 | 1.227 | 1.050 | 3.733 | 3.031 | -4.38 |
陇南 | 6.275 | 4.835 | 1.902 | 1.203 | 0.811 | 1.044 | 2.503 | 2.208 | -6.82 |
天水 | 1.607 | 0.763 | 1.129 | 3.340 | 1.081 | 2.388 | 1.166 | 1.367 | -2.44 |
庆阳 | 1.089 | 1.589 | 2.147 | 1.284 | 1.020 | 1.025 | 1.181 | 1.268 | 0.63 |
榆林 | 1.450 | 1.441 | 1.052 | 1.197 | 1.021 | 2.009 | 1.701 | 1.250 | 1.23 |
铜川 | 1.065 | 0.376 | 0.466 | 0.399 | 0.475 | 0.331 | 0.312 | 0.451 | -9.02 |
阳泉 | 0.353 | 0.360 | 0.308 | 0.409 | 0.430 | 0.319 | 0.645 | 0.382 | 4.76 |
大同 | 0.387 | 0.399 | 0.357 | 0.312 | 0.312 | 0.309 | 0.378 | 0.348 | -0.17 |
兰州 | 0.381 | 0.343 | 0.317 | 0.279 | 0.353 | 0.364 | 0.469 | 0.342 | 1.62 |
西宁 | 0.346 | 0.348 | 0.340 | 0.285 | 0.276 | 0.468 | 0.313 | 0.321 | -0.76 |
宝鸡 | 0.545 | 0.481 | 0.462 | 0.628 | 5.022 | 0.563 | 2.612 | 1.050 | 12.81 |
济南 | 0.449 | 1.006 | 0.443 | 0.581 | 0.727 | 1.160 | 1.723 | 0.809 | 10.89 |
太原 | 0.351 | 0.483 | 0.503 | 0.351 | 0.324 | 0.487 | 1.250 | 0.540 | 10.25 |
西安 | 0.299 | 0.298 | 0.301 | 0.412 | 0.375 | 1.001 | 1.019 | 0.563 | 9.88 |
乌海 | 0.391 | 0.320 | 0.390 | 0.524 | 1.014 | 0.811 | 1.293 | 0.650 | 9.64 |
陇南 | 6.275 | 4.835 | 1.902 | 1.203 | 0.811 | 1.044 | 2.503 | 2.208 | -6.82 |
石嘴山 | 1.122 | 1.025 | 1.230 | 0.375 | 1.024 | 1.016 | 0.388 | 0.935 | -7.84 |
运城 | 1.605 | 0.725 | 0.638 | 0.532 | 0.524 | 0.519 | 0.535 | 0.675 | -8.11 |
固原 | 3.167 | 1.018 | 1.220 | 0.698 | 0.657 | 1.004 | 1.025 | 1.128 | -8.31 |
铜川 | 1.065 | 0.376 | 0.466 | 0.399 | 0.475 | 0.331 | 0.312 | 0.451 | -9.02 |
流域均值 | 0.955 | 0.806 | 0.728 | 0.813 | 0.692 | 0.762 | 1.076 | 0.803 | 2.40 |
表5
OLS模型估计结果"
变量 | 系数 | 标准差 | t值 | P值 | VIF |
---|---|---|---|---|---|
截距 | 0.803*** | 0.020 | 39.76 | 0.000 | - |
X1 | 0.086*** | 0.029 | 2.96 | 0.003 | 2.05 |
X2 | 0.004 | 0.037 | 0.10 | 0.922 | 3.27 |
X3 | -0.086*** | 0.033 | -2.60 | 0.009 | 2.70 |
X4 | 0.825*** | 0.026 | 9.58 | 0.000 | 1.66 |
X5 | -0.047** | 0.025 | -1.91 | 0.057 | 1.49 |
X6 | 0.030 | 0.024 | 1.37 | 0.170 | 1.18 |
X7 | -0.134*** | 0.022 | -4.63 | 0.007 | 2.06 |
X8 | -0.081*** | 0.029 | 2.71 | 0.000 | 2.17 |
表8
GTWR模型回归系数的描述性统计"
自变量 | 平均值 | 下四分位数 | 中位数 | 上四分位数 | 最小值 | 最大值 |
---|---|---|---|---|---|---|
X1 | 0.122 | 0.012 | 0.064 | 0.197 | -0.459 | 0.998 |
X3 | -0.092 | -0.129 | -0.018 | 0.039 | -2.906 | 0.676 |
X4 | 0.102 | -0.015 | 0.093 | 0.218 | -0.583 | 0.740 |
X5 | -0.078 | -0.124 | -0.039 | 0.011 | -1.647 | 0.359 |
X7 | -0.043 | -0.133 | -0.082 | 0.026 | -0.368 | 0.556 |
X8 | 0.023 | -0.066 | 0.017 | 0.123 | -0.495 | 0.584 |
[1] |
李成宇, 张士强, 张伟, 等. 中国省际生态福利绩效测算及影响因素研究[J]. 地理科学, 2019, 39(12): 1875-1883.
doi: 10.13249/j.cnki.sgs.2019.12.005 |
[Li Chengyu, Zhang Shiqiang, Zhang Wei, et al. Measurement and influencing factors of inter-provincial ecological well-being performance in China[J]. Acta Geographica Sinica, 2019, 39(12): 1875-1883. ]
doi: 10.13249/j.cnki.sgs.2019.12.005 |
|
[2] |
李成宇, 张士强, 张伟. 中国省际工业生态效率空间分布及影响因素研究[J]. 地理科学, 2018, 38(12): 1970-1978.
doi: 10.13249/j.cnki.sgs.2018.12.004 |
[Li Chengyu, Zhang Shiqiang, Zhang Wei. Spatial distribution characteristics and influencing factors of China’s inter provincial industrial eco-efficiency[J]. Scientia Geographica Sinica, 2018, 38(12): 1970-1978. ]
doi: 10.13249/j.cnki.sgs.2018.12.004 |
|
[3] | Daly H E. The economics of the steady state[J]. The American Economic Review, American Economic Association, 1974, 64(2): 15-21. |
[4] | UNDP. Human development report 1990: Concept and measurement of human development[M]. Oxford: Oxford University Press, 1990: 15-18. |
[5] |
Common M. Measuring national economic performance without using prices[J]. Ecological Economics, 2007, 64(1): 92-102.
doi: 10.1016/j.ecolecon.2007.07.017 |
[6] | Hall J, Giovannini E, Morrone A, et al. A framework to measure the progress of societies[J]. Revue D Economie Politique, 2011, 121(1): 93-118. |
[7] |
Tone K, Tsutsui M. Dynamic DEA: A slacks-based measure approach[J]. Omega, 2010, 38(3): 145-156.
doi: 10.1016/j.omega.2009.07.003 |
[8] |
Vemuri A W, Costanza R. The role of human, social, built, and natural capital in explaining life satisfaction at the country level: Toward a national well-being index (NWI)[J]. Ecological Economics, 2006, 58(1): 119-133.
doi: 10.1016/j.ecolecon.2005.02.008 |
[9] | 诸大建, 张帅. 生态福利绩效与深化可持续发展的研究[J]. 同济大学学报(社会科学版), 2014, 25(5): 106-115. |
[Zhu Dajian, Zhang Shuai. Ecological wellbeing performance and further research on sustainable development[J]. Journal of Tongji University (Social Science Edition), 2014, 25(5): 106-115. ] | |
[10] | 徐昱东, 亓朋, 童临风. 中国省级地区生态福利绩效水平时空分异格局研究[J]. 区域经济评论, 2017(4): 123-131. |
[Xu Yudong, Qi Peng, Tong Linfeng. Spatial-temporal differentiation of Chinese provincial ecological well-being performance[J]. Regional Economic Review, 2017(4): 123-131. ] | |
[11] | 臧漫丹, 诸大建, 刘国平. 生态福利绩效:概念、内涵及G20实证[J]. 中国人口·资源与环境, 2013, 23(5): 118-124. |
[Zang Mandan, Zhu Dajian, Liu Guoping. Ecological well-being performance: Concept, connotation and empirical of G20[J]. China Population, Resources and Environment, 2013, 23(5): 118-124. ] | |
[12] | 冯吉芳, 袁健红. 中国区域生态福利绩效及其影响因素[J]. 中国科技论坛, 2016(3): 100-105. |
[Feng Jifang, Yuan Jianhong. On Chinese regional ecological well-being performance and its influence factors[J]. Forum on Science and Technology in China, 2016(3): 100-105. ] | |
[13] |
Dietz T, Rosa E A, York R. Environmentally efficient well-being: Is there a Kuznets curve?[J]. Applied Geography, 2012, 32(1): 21-28.
doi: 10.1016/j.apgeog.2010.10.011 |
[14] | 龙亮军. 基于两阶段Super-NSBM模型的城市生态福利绩效评价研究[J]. 中国人口·资源与环境, 2019, 29(7): 1-10. |
[Long Liangjun. Evaluation of urban ecological well-being performance of Chinese major cities based on two-stage super-efficiency network SBM model[J]. China Population, Resources and Environment, 2019, 29(7): 1-10. ] | |
[15] |
龙亮军, 王霞, 郭兵. 基于改进DEA模型的城市生态福利绩效评价研究——以我国35个大中城市为例[J]. 自然资源学报, 2017, 32(4): 595-605.
doi: 10.11849/zrzyxb.20160515 |
[Long Liangjun, Wang Xia, Guo Bing. Evaluation of urban ecological well-being performance based on revised DEA model: A case study of 35 major cities in China[J]. Journal of Natural Resources, 2017, 32(4): 595-605. ]
doi: 10.11849/zrzyxb.20160515 |
|
[16] |
Jorgenson A K, Dietz T. Economic growth does not reduce the ecological intensity of human well-being[J]. Sustainability Science, 2015, 10(1): 149-156.
doi: 10.1007/s11625-014-0264-6 |
[17] | 方时姣, 肖权. 中国区域生态福利绩效水平及其空间效应研究[J]. 中国人口·资源与环境, 2019, 29(3): 1-10. |
[Fang Shijiao, Xiao Quan. Research on regional ecological well-being performance and spatial effect in China[J]. China Population, Resources and Environment, 2019, 29(3): 1-10. ] | |
[18] | 龙亮军, 王霞. 上海市生态福利绩效评价研究[J]. 中国人口·资源与环境, 2017, 27(2): 84-92. |
[Long Liangjun, Wang Xia. A study on Shanghai’s ecological well-being performance[J]. China Population, Resources and Environment, 2017, 27(2): 84-92. ] | |
[19] |
Feng Y J, Zhong S Y, Li Q Y, et al. Ecological well-being performance growth in China (1994—2014): From perspectives of industrial structure green adjustment and green total factor productivity[J]. Journal of Cleaner Production, 2019, 236: 117556, doi: 10.1016/j.jclepro.2019.07.031.
doi: 10.1016/j.jclepro.2019.07.031 |
[20] |
Bian J, Ren H, Liu P. Evaluation of urban ecological well-being performance in China: A case study of 30 provincial capital cities[J]. Journal of Cleaner Production, 2020, 254: 120109, doi: 10.1016/j.jclepro.2020.120109.
doi: 10.1016/j.jclepro.2020.120109 |
[21] | 肖黎明, 吉荟茹. 绿色技术创新视域下中国生态福利绩效的时空演变及影响因素——基于省域尺度的数据检验[J]. 科技管理研究, 2018, 38(17): 243-251. |
[Xiao Liming, Ji Huiru. Spatial structure change and influencing factors of ecological well-being performance from the perspective of green technological innovation in China: Data analysis based on provincial panel data[J]. Science and Technology Management Research, 2018, 38(17): 243-251. ] | |
[22] | 杜慧彬, 黄立军, 张辰, 等. 中国省级生态福利绩效区域差异性分解和收敛性研究[J]. 生态经济, 2019, 35(3): 187-193. |
[Du Huibin, Huang Lijun, Zhang Chen et al. Research on the regional differences decomposition and convergence mechanism of ecological well-being performance[J]. Ecological Economy, 2019, 35(3): 187-193. ] | |
[23] | 陈少炜, 罗林杰, 查欣洁. 黄河流域生态福利绩效测算及影响因素分析[J]. 生态经济, 2021, 37(9): 146-154, 168. |
[Chen Shaowei, Luo Linjie, Zha Xinjie. Research on the measurement and influencing factors of ecological well-being performance: Evidence from the Yellow River region of China[J]. Ecological Economy, 2021, 37(9): 146-154, 168. ] | |
[24] | 陈明华, 岳海珺, 郝云飞, 等. 黄河流域生态效率的空间差异、动态演进及驱动因素[J]. 数量经济技术经济研究, 2021, 38(9): 25-44. |
[Chen Minghua, Yue Haijun, Hao Yunfei, et al. The spatial disparity, dynamic evolution and driving factors of ecological efficiency in the Yellow River Basin[J]. The Journal of Quantitative & Technical Economics, 2021, 38(9): 25-44. ] | |
[25] | 王奕淇, 李国平. 基于SD模型的黄河流域生态环境与社会经济发展可持续性模拟[J]. 干旱区地理, 2022, 45(3): 901-911. |
[Wang Yiqi, Li Guoping. Sustainable simulation of ecological environment and socio-economic development in the Yellow River Basin based on the SD model[J]. Arid Land Geography, 2022, 45(3): 901-911. ] | |
[26] | 张凯莉, 冯荣荣, 刘潭, 等. 黄河流域城市化与生态系统服务价值协调性及障碍因素研究[J]. 干旱区地理, 2022, 45(4): 1254-1267. |
[Zhang Kaili, Feng Rongrong, Liu Tan, et al. Research on the coordination and obstacle factors of urbanization and ecosystem service value in the Yellow River Basin[J]. Arid Land Geography, 2022, 45(4):1254-1267. ] | |
[27] | 任保平, 豆渊博. 黄河流域生态保护和高质量发展研究综述[J]. 人民黄河, 2021, 43(10): 30-34. |
[Ren Baoping, Dou Yuanbo. Literature review on ecological environment protection and high quality development of the Yellow River Basin[J]. Yellow River, 2021, 43(10): 30-34. ] | |
[28] |
Xu D. Quantization of the coupling mechanism between eco-environmental quality and urbanization from multisource remote sensing data[J]. Journal of Cleaner Production, 2021, 321: 128948, doi: 10.1016/j.jclepro.2021.128948.
doi: 10.1016/j.jclepro.2021.128948 |
[29] |
马勇, 童昀, 任洁. 多源遥感数据支持下的县域尺度生态效率测算及稳健性检验——以长江中游城市群为例[J]. 自然资源学报, 2019, 34(6): 1196-1208.
doi: 10.31497/zrzyxb.20190606 |
[Ma Yong, Tong Yun, Ren Jie. Calculation and robustness test of county-scale ecological efficiency based on multi-source remote sensing data: Taking the urban agglomeration in the middle reaches of Yangtze River as an example[J]. Journal of Natural Resources, 2019, 34(6): 1196-1208. ]
doi: 10.31497/zrzyxb.20190606 |
|
[30] |
Bian J, Zhang Y, Shuai C, et al. Have cities effectively improved ecological well-being performance? Empirical analysis of 278 Chinese cities[J]. Journal of Cleaner Production, 2020, 245: 118913, doi: 10.1016/j.jclepro.2019.118913.
doi: 10.1016/j.jclepro.2019.118913 |
[31] |
Tone K. A slacks-based measure of super-effciency in data envelopment analysis[J]. European Journal of Operational Research, 2002, 143(1): 32-41.
doi: 10.1016/S0377-2217(01)00324-1 |
[32] | 高志刚, 童思聪. 基于非期望产出的新疆区域生态经济投入效益分析[J]. 干旱区地理, 2020, 43(3): 777-785. |
[Gao Zhigang, Tong Sicong. Regional eco-economic input efficiency of Xinjiang based on undesirable output[J]. Arid Land Geography, 2020, 43(3): 777-785. ] | |
[33] |
杨晴青, 刘倩, 尹莎, 等. 秦巴山区乡村交通环境脆弱性及影响因素——以陕西省洛南县为例[J]. 地理学报, 2019, 74(6): 1236-1251.
doi: 10.11821/dlxb201906012 |
[Yang Qingqing, Liu Qian, Yin Sha. Vulnerability and influencing factors of rural transportation environment in Qinling-Daba mountainous areas: A case study of Luonan County in Shaanxi Province[J]. Acta Geographica Sinica, 2019, 74(6): 1236-1251. ]
doi: 10.11821/dlxb201906012 |
|
[34] | Brunsdon C, Fotheringham S, Charlton M. Geographically weighted regression-modelling spatial non-stationarity[J]. Journal of the Royal Statistical Society, 1998, 47(3): 431-443. |
[35] |
刘卫东, 刘红光, 范晓梅, 等. 地区间贸易流量的产业—空间模型构建与应用[J]. 地理学报, 2012, 67(2): 147-156.
doi: 10.11821/xb201202001 |
[Liu Weidong, Liu Hongguang, Fan Xiaomei, et al. Sector-specific spatial statistic model for estimating inter-regional trade flows: A case study of agricultural, chemical and electronic sectors in China[J]. Acta Geographica Sinica, 2012, 67(2): 147-156. ]
doi: 10.11821/xb201202001 |
|
[36] |
胡宇娜, 梅林, 魏建国. 基于GWR模型的中国区域旅行社业效率空间分异及动力机制分析[J]. 地理科学, 2018, 38(1): 107-113.
doi: 10.13249/j.cnki.sgs.2018.01.012 |
[Hu Yuna, Mei Lin, Wei Jianguo. Spatial differentiation and dynamic mechanism of regional travel agency efficiency in China based on GWR model[J]. Scientia Geographica Sinica, 2018, 38(1): 107-113. ]
doi: 10.13249/j.cnki.sgs.2018.01.012 |
|
[37] |
李恩康, 陆玉麒, 陈娱. 中国外贸货物出口的地理格局演化及影响因素分析——基于货物出口距离和GTWR模型[J]. 地理研究, 2019, 38(11): 2624-2638.
doi: 10.11821/dlyj020181007 |
[Li Enkang, Lu Yuqi, Chen Yu. Geographic pattern evolution of China’s merchandise export and its influencing factors: Based on the analysis of merchandise export distance and the GTWR model[J]. Geographical Research, 2019, 38(11): 2624-2638. ]
doi: 10.11821/dlyj020181007 |
|
[38] |
耿甜伟, 陈海, 张行, 等. 基于GWR的陕西省生态系统服务价值时空演变特征及影响因素分析[J]. 自然资源学报, 2020, 35(7): 1714-1727.
doi: 10.31497/zrzyxb.20200715 |
[Geng Tianwei, Chen Hai, Zhang Hang, et al. Spatiotemporal evolution of land ecosystem service value and its influencing factors in Shaanxi Province based on GWR[J]. Journal of Natural Resources, 2020, 35(7): 1714-1727. ]
doi: 10.31497/zrzyxb.20200715 |
[1] | 任贵秀, 刘凯. 黄河流域绿色创新的时空演化特征及影响因素分析[J]. 干旱区地理, 2024, 47(1): 158-169. |
[2] | 王松茂, 宁文萍, 牛金兰, 安康. 黄河流域城市生态韧性时空分异及收敛研究——基于七大城市群61个城市的实证分析[J]. 干旱区地理, 2024, 47(1): 93-103. |
[3] | 周成, 赵亚玲, 张旭红, 周霖, 任敏敏. 黄河流域城市生态韧性与效率时空演化特征及协调发展分析[J]. 干旱区地理, 2023, 46(9): 1514-1523. |
[4] | 李建辉, 陈琳, 党争. 黄河流域爱国主义教育基地空间格局及影响因素研究[J]. 干旱区地理, 2023, 46(9): 1536-1544. |
[5] | 张昊, 韩增林, 乔国荣, 王辉, 王宏业, 段冶. 黄河流域城市间旅游经济联系格局及影响因素研究[J]. 干旱区地理, 2023, 46(8): 1344-1354. |
[6] | 柏荷, 明義森, 刘启航, 黄昌. 基于MGWR模型的黄河流域GPM卫星降水数据降尺度研究[J]. 干旱区地理, 2023, 46(7): 1052-1062. |
[7] | 田柳兰, 王珊珊, 毋兆鹏. 基于多时相遥感数据的乌鲁木齐市生态安全格局构建[J]. 干旱区地理, 2023, 46(7): 1155-1165. |
[8] | 苏航, 谷娇, 赵金丽. 多尺度视角下黄河流域城市信息网络空间结构演化研究[J]. 干旱区地理, 2023, 46(7): 1206-1216. |
[9] | 穆佳薇, 乔保荣, 余国新. 新疆塔里木河流域县域农业低碳生产率时空格局及影响效应研究[J]. 干旱区地理, 2023, 46(6): 968-981. |
[10] | 孟望生,刘华桢,张扬. 黄河流域七大城市群绿色发展效率测度及特征分析[J]. 干旱区地理, 2023, 46(5): 846-856. |
[11] | 许昕彤,朱丽,吕潇雨,郭浩. MSWEP降水产品在黄河流域气象干旱监测中的适用性评价[J]. 干旱区地理, 2023, 46(3): 371-384. |
[12] | 田小波,胡静,贾垚焱,朱磊. 高质量发展阶段旅游业发展水平空间分异成因探测——基于因素分解的黄河流域实证[J]. 干旱区地理, 2023, 46(3): 460-470. |
[13] | 宁雷,连华,牛月,盛双庆,高泽宇. 城镇发展的收缩状态识别、分类及因素探讨——以黄河流域甘肃段为例[J]. 干旱区地理, 2023, 46(3): 492-504. |
[14] | 余焕, 雷敏, 马金晶, 李睿. 基于绿色GDP和生态效率的区域可持续发展研究——以陕西省为例[J]. 干旱区地理, 2023, 46(2): 284-293. |
[15] | 鹿晨昱,黄萍,张彤,刘小莞,成薇. 甘肃省绿色发展效率时空演化与驱动因素研究[J]. 干旱区地理, 2023, 46(2): 305-315. |
|