干旱区地理 ›› 2022, Vol. 45 ›› Issue (3): 901-911.doi: 10.12118/j.issn.1000-6060.2021.401
收稿日期:
2021-09-07
修回日期:
2021-12-13
出版日期:
2022-05-25
发布日期:
2022-05-31
通讯作者:
李国平
作者简介:
王奕淇(1988-),女,博士,副教授,主要从事资源环境经济学等方面的研究. E-mail: 基金资助:
Received:
2021-09-07
Revised:
2021-12-13
Online:
2022-05-25
Published:
2022-05-31
Contact:
Guoping LI
摘要:
要实现黄河流域生态保护和高质量发展,需解决流域生态环境与社会经济发展的可持续问题。运用系统动力学方法,构建社会、经济、资源与环境4个子系统,设计维持现状、优先发展社会、优先发展经济、优先节约资源、优先保护环境以及协同发展6个情景,在对不同情景进行模拟仿真的基础上,探寻实现黄河流域生态环境与社会经济可持续发展的最优方案。结果表明:在协同发展情景中,黄河流域的社会经济得到较快发展,总人口和国内生产总值(GDP)于2030年将分别增长10.93%和499.05%;资源的使用效率得到提高,单位GDP水耗和能耗于2030将分别下降78.31%和68.16%;污染物的排放量可有效降低,工业化学需氧量(COD)排放量和工业二氧化硫(SO2)排放量于2030将分别下降80.64%和80.17%。相较于其他情景,协同发展是黄河流域实现生态环境与社会经济可持续发展的最优方案。
王奕淇,李国平. 基于SD模型的黄河流域生态环境与社会经济发展可持续性模拟[J]. 干旱区地理, 2022, 45(3): 901-911.
WANG Yiqi,LI Guoping. Sustainable simulation of ecological environment and socio-economic development in the Yellow River Basin based on the SD model[J]. Arid Land Geography, 2022, 45(3): 901-911.
表2
情景设计"
变量 | 情景1 | 情景2 | 情景3 | 情景4 | 情景5 | 情景6 |
---|---|---|---|---|---|---|
人口净增长率 | - | 上升10% | - | - | - | 上升5% |
就业人口占总人口比重 | - | 上升10% | - | - | - | 上升5% |
第一产业增加值增长率 | - | - | 上升10% | - | - | 上升5% |
第二产业增加值增长率 | - | - | 上升10% | - | - | 上升5% |
第三产业增加值增长率 | - | - | 上升10% | - | - | 上升5% |
农业用水增长率 | - | - | - | 下降10% | - | 下降5% |
工业用水增长率 | - | - | - | 下降10% | - | 下降5% |
生活用水增长率 | - | - | - | 下降10% | - | 下降5% |
生态用水增长率 | - | - | - | 下降10% | - | 下降5% |
能源消费弹性系数 | - | - | - | 下降10% | - | 下降5% |
工业废水治理投资 | - | - | - | - | 上升10% | 上升5% |
工业废气治理投资 | - | - | - | - | 上升10% | 上升5% |
工业固体废弃物治理投资 | - | - | - | - | 上升10% | 上升5% |
表3
SD模型的有效性检验结果"
年份 | 总人口 | GDP | 总用水量 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
真实值/104人 | 仿真值/104人 | 相对误差/% | 真实值/108元 | 仿真值/108元 | 相对误差/% | 真实值/108 m3 | 仿真值/108 m3 | 相对误差/% | |||
2007 | 40094.0 | 40058.0 | 0.09 | 73977.1 | 73977.1 | 0.00 | 1192.9 | 1189.4 | 0.29 | ||
2008 | 40280.0 | 40094.1 | 0.46 | 90068.6 | 89652.8 | 0.46 | 1205.7 | 1193.2 | 1.04 | ||
2009 | 40491.0 | 40278.5 | 0.52 | 98618.9 | 98084.8 | 0.54 | 1224.3 | 1209.6 | 1.20 | ||
2010 | 40575.0 | 40487.9 | 0.21 | 117604.9 | 117363.0 | 0.21 | 1235.4 | 1225.5 | 0.80 | ||
2011 | 40664.0 | 40573.0 | 0.22 | 140222.3 | 139905.0 | 0.23 | 1264.4 | 1250.4 | 1.11 | ||
2012 | 40819.0 | 40662.2 | 0.38 | 155817.5 | 155221.0 | 0.38 | 1271.9 | 1277.1 | 0.41 | ||
2013 | 40959.0 | 40816.7 | 0.35 | 170631.2 | 170058.0 | 0.34 | 1269.6 | 1268.0 | 0.13 | ||
2014 | 41129.0 | 40955.5 | 0.42 | 183015.4 | 182243.0 | 0.42 | 1221.1 | 1212.7 | 0.69 | ||
2015 | 41355.0 | 41127.5 | 0.55 | 190796.6 | 189768.0 | 0.54 | 1267.9 | 1247.0 | 1.65 | ||
2016 | 41634.0 | 41353.7 | 0.67 | 204950.4 | 203562.0 | 0.68 | 1275.0 | 1250.9 | 1.89 | ||
2017 | 41839.0 | 41630.8 | 0.50 | 221218.9 | 220141.0 | 0.49 | 1275.2 | 1257.3 | 1.40 | ||
年份 | 能源消费总量 | 工业COD治理量 | 工业氨氮治理量 | ||||||||
真实值/104 t | 仿真值/104 t | 相对误差/% | 真实值/104 t | 仿真值/104 t | 相对误差/% | 真实值/104 t | 仿真值/104 t | 相对误差/% | |||
2007 | 106663.2 | 96902.7 | 9.15 | 435.0 | 432.9 | 0.48 | 15.5 | 15.4 | 0.65 | ||
2008 | 112739.2 | 106662.0 | 5.39 | 468.7 | 465.2 | 0.75 | 18.3 | 18.2 | 0.55 | ||
2009 | 118673.6 | 112738.0 | 5.00 | 464.1 | 458.9 | 1.12 | 19.9 | 19.7 | 1.01 | ||
2010 | 128820.3 | 118671.0 | 7.88 | 476.8 | 470.5 | 1.32 | 31.3 | 30.9 | 1.28 | ||
2011 | 140704.0 | 128816.0 | 8.45 | 582.5 | 576.1 | 1.10 | 34.2 | 33.8 | 1.17 | ||
2012 | 147961.9 | 140698.0 | 4.91 | 655.9 | 620.6 | 5.38 | 41.4 | 39.2 | 5.31 | ||
2013 | 140367.0 | 147955.0 | 5.41 | 581.3 | 592.8 | 1.98 | 39.0 | 39.7 | 1.79 | ||
2014 | 145133.0 | 140358.0 | 3.29 | 579.8 | 572.6 | 1.24 | 34.2 | 33.7 | 1.46 | ||
2015 | 148083.0 | 145125.0 | 2.00 | 517.3 | 499.7 | 3.40 | 36.5 | 35.3 | 3.29 | ||
2016 | 150217.0 | 148074.0 | 1.43 | 419.5 | 418.8 | 0.17 | 43.5 | 43.4 | 0.23 | ||
2017 | 153238.0 | 150209.0 | 1.98 | 395.4 | 381.6 | 3.49 | 42.3 | 40.8 | 3.55 | ||
年份 | 工业SO2治理量 | 工业NOx治理量 | 污染治理投资完成 | ||||||||
真实值/104 t | 仿真值/104 t | 相对误差/% | 真实值/104 t | 仿真值/104 t | 相对误差/% | 真实值/108元 | 仿真值/108元 | 相对误差/% | |||
2007 | 625.8 | 627.2 | 0.22 | 16.9 | 17.0 | 0.59 | 870.8 | 872.9 | 0.24 | ||
2008 | 858.2 | 855.5 | 0.31 | 15.1 | 15.1 | 0.00 | 1074.4 | 1066.9 | 0.70 | ||
2009 | 1102.1 | 1100.5 | 0.15 | 20.1 | 20.1 | 0.00 | 1201.9 | 1196.6 | 0.44 | ||
2010 | 1237.2 | 1235.9 | 0.11 | 19.8 | 19.8 | 0.00 | 1445.5 | 1443.6 | 0.13 | ||
2011 | 1540.2 | 1552.6 | 0.81 | 34.1 | 34.4 | 0.88 | 1858.5 | 1860.7 | 0.12 | ||
2012 | 1651.2 | 1581.0 | 4.25 | 38.9 | 37.3 | 4.11 | 2281.8 | 2181.5 | 4.40 | ||
2013 | 1822.3 | 1818.5 | 0.21 | 135.4 | 135.2 | 0.15 | 2592.3 | 2584.9 | 0.29 | ||
2014 | 1980.7 | 1965.4 | 0.77 | 189.6 | 188.2 | 0.74 | 2799.9 | 2788.3 | 0.41 | ||
2015 | 2123.6 | 2100.8 | 1.07 | 263.7 | 260.8 | 1.10 | 2483.9 | 2467.0 | 0.68 | ||
2016 | 1101.5 | 1099.4 | 0.19 | 428.7 | 428.0 | 0.16 | 3005.2 | 2992.4 | 0.43 | ||
2017 | 1076.9 | 1068.5 | 0.78 | 438.4 | 435.1 | 0.75 | 3125.4 | 3104.0 | 0.68 |
表4
不同情境中的仿真结果"
子系统 | 变量 | 年份 | 情景1 | 情景2 | 情景3 | 情景4 | 情景5 | 情景6 |
---|---|---|---|---|---|---|---|---|
社会 | 总人口/104人 | 2007 | 40058.00 | 40058.00 | 40058.00 | 40058.00 | 40058.00 | 40058.00 |
2020 | 42207.90 | 42710.92 | 42007.60 | 42407.80 | 42207.90 | 42623.20 | ||
2030 | 43927.00 | 44655.78 | 43711.29 | 44131.90 | 43927.00 | 44436.48 | ||
增长率/% | 9.66 | 11.48 | 9.12 | 10.17 | 9.66 | 10.93 | ||
就业人口/ 104人 | 2007 | 23253.70 | 25581.00 | 23253.70 | 23253.70 | 23253.70 | 24416.60 | |
2020 | 26168.90 | 29340.80 | 26015.20 | 26362.60 | 26168.90 | 27552.40 | ||
2030 | 27278.70 | 30729.34 | 27054.29 | 27491.86 | 27278.70 | 29207.84 | ||
增长率/% | 17.31 | 20.13 | 16.34 | 18.23 | 17.31 | 19.62 | ||
经济 | GDP/108元 | 2007 | 73977.10 | 73977.10 | 73977.10 | 73977.10 | 73977.10 | 73977.10 |
2020 | 240532.00 | 258585.00 | 346011.00 | 282235.00 | 242627.00 | 325910.00 | ||
2030 | 358819.00 | 374550.00 | 466998.00 | 405823.00 | 363266.00 | 443161.00 | ||
增长率/% | 385.04 | 406.31 | 531.27 | 448.58 | 391.05 | 499.05 | ||
资源 | 单位GDP水耗/t·(104元)-1 | 2007 | 160.77 | 160.77 | 160.77 | 160.77 | 160.77 | 160.77 |
2020 | 56.24 | 58.97 | 44.72 | 41.10 | 53.67 | 39.49 | ||
2030 | 47.18 | 48.23 | 40.68 | 37.03 | 44.26 | 34.87 | ||
增长率/% | -70.65 | -70.00 | -74.70 | -76.97 | -72.47 | -78.31 | ||
单位GDP能耗/t·(104元)-1 | 2007 | 1.31 | 1.31 | 1.31 | 1.31 | 1.31 | 1.31 | |
2020 | 0.66 | 0.70 | 0.53 | 0.51 | 0.62 | 0.46 | ||
2030 | 0.55 | 0.57 | 0.45 | 0.43 | 0.52 | 0.42 | ||
增长率/% | -57.72 | -56.32 | -65.31 | -67.02 | -60.07 | -68.16 | ||
环境 | 工业COD排放量/104 t | 2007 | 157.10 | 164.95 | 164.95 | 157.10 | 132.68 | 150.46 |
2020 | 81.18 | 87.78 | 96.30 | 72.81 | 53.74 | 66.39 | ||
2030 | 45.50 | 50.52 | 60.05 | 35.21 | 16.36 | 29.13 | ||
增长率/% | -71.04 | -69.37 | -63.60 | -77.59 | -87.67 | -80.64 | ||
工业SO2排放量/104 t | 2007 | 812.50 | 853.09 | 853.13 | 812.50 | 781.37 | 837.51 | |
2020 | 349.85 | 381.91 | 439.83 | 319.85 | 238.26 | 270.29 | ||
2030 | 240.31 | 266.83 | 324.34 | 210.52 | 110.69 | 166.10 | ||
增长率/% | -70.42 | -68.72 | -61.98 | -74.09 | -85.83 | -80.17 |
[1] | 习近平. 在黄河流域生态保护和高质量发展座谈会上的讲话[J]. 求是, 2019(20): 1-5. |
[ Xi Jinping. Speech at the symposium on ecological protection and high-quality development in the Yellow River Basin[J]. Qiu Shi, 2019(20): 1-5. ] | |
[2] | 薛澜, 杨越, 陈玲, 等. 黄河流域生态保护和高质量发展战略立法的策略[J]. 中国人口·资源与环境, 2020, 30(12): 1-7. |
[ Xue Lan, Yang Yue, Chen Ling, et al. Strategy of the legislation of Yellow River Basin ecological protection and high-quality development[J]. China Population Resources and Environment, 2020, 30(12): 1-7. ] | |
[3] | 任保平, 张倩. 黄河流域高质量发展的战略设计及其支撑体系构建[J]. 改革, 2019(10): 26-34. |
[ Ren Baoping, Zhang Qian. The strategic and supporting system construction of high-quality development in the Yellow River Basin[J]. Reform, 2019(10): 26-34. ] | |
[4] | 安树伟, 李瑞鹏. 黄河流域高质量发展的内涵与推进方略[J]. 改革, 2019(1): 76-86. |
[ An Shuwei, Li Ruipeng. Intension and promotion strategy of high-quality development in the Yellow River Basin[J]. Reform, 2019(1): 76-86. ] | |
[5] | 郭晗. 黄河流域高质量发展中的可持续发展与生态环境保护[J]. 人文杂志, 2020(1): 17-21. |
[ Guo Han. Sustainable development and ecological environment protection in high-quality development of the Yellow River Basin[J]. The Journal of Humanities, 2020(1): 17-21. ] | |
[6] |
陆大道, 孙东琪. 黄河流域的综合治理与可持续发展[J]. 地理学报, 2019, 74(12): 2431-2436.
doi: 10.11821/dlxb201912001 |
[ Lu Dadao, Sun Dongqi. Development and management tasks of the Yellow River Basin: A preliminary understanding and suggestion[J]. Acta Geographica Sinica, 2019, 74(12): 2431-2436. ]
doi: 10.11821/dlxb201912001 |
|
[7] | 钞小静, 周文慧. 黄河流域高质量发展的现代化治理体系构建[J]. 经济问题, 2020(11): 1-7. |
[ Chao Xiaojing, Zhou Wenhui. The construction of modernized management system for high-quality development of the Yellow River Basin[J]. On Economic Problems, 2020(11): 1-7. ] | |
[8] | 郭晗, 任保平. 黄河流域高质量发展的空间治理: 机理诠释与现实策略[J]. 改革, 2020(4): 74-85. |
[ Guo Han, Ren Baoping. Spatial governance of high-quality development in the Yellow River Basin: Mechanism interpretation and practical strategies[J]. Reform, 2020(4): 74-85. ] | |
[9] |
刘琳轲, 梁流涛, 高攀, 等. 黄河流域生态保护与高质量发展的耦合关系及交互响应[J]. 自然资源学报, 2021, 36(1): 176-195.
doi: 10.31497/zrzyxb.20210112 |
[ Liu Linke, Liang Liutao, Gao Pan, et al. Coupling relationship and interactive response between ecological protection and high-quality development in the Yellow River Basin[J]. Journal of Natural Resources, 2021, 36(1): 176-195. ]
doi: 10.31497/zrzyxb.20210112 |
|
[10] | 任保平, 杜宇翔. 黄河流域经济增长-产业按照-生态环境的耦合协同关系[J]. 中国人口·资源与环境, 2021, 31(2): 119-129. |
[ Ren Baoping, Du Yuxiang. Coupling coordination of economic growth, industrial development and ecology in the Yellow River Basin[J]. China Population, Resources and Environment, 2021, 31(2): 119-129. ] | |
[11] | 赵莺燕, 于法稳. 黄河流域水资源可持续利用: 核心、路径及对策[J]. 中国特色社会主义研究, 2020(1): 52-62. |
[ Zhao Yingyan, Yu Fawen. Sustainable utilization of water resources in the Yellow River Basin: Core, path and countermeasures[J]. Studies on Socialism with Chinese Characteristics, 2020(1): 52-62. ] | |
[12] | 师博. 黄河流域中心城市高质量发展路径研究[J]. 人文杂志, 2020(1): 5-9. |
[ Shi Bo. Study on high-quality development path of central cities in the Yellow River Basin[J]. The Journal of Humanities, 2020(1): 5-9. ] | |
[13] | 高煜, 许钊. 超越流域经济: 黄河流域实体经济高质量发展的模式与路径[J]. 经济问题, 2020(10): 1-9, 52. |
[ Gao Yu, Xu Zhao. Beyond drainage economics: The model and path for high-quality development of the real economy in the Yellow River Basin[J]. On Economic Problems, 2020(10): 1-9, 52. ] | |
[14] | 徐辉, 师诺, 武玲玲, 等. 黄河流域高质量发展水平测度及其时空演变[J]. 资源科学, 2020, 42(1): 115-126. |
[ Xu Hui, Shi Nuo, Wu Lingling, et al. High-quality development level and its spatiotemporal changes in the Yellow River Basin[J]. Resources Science, 2020, 42(1): 115-126. ] | |
[15] | 李玲蔚, 白永平, 杨雪荻, 等. 黄河几字湾地区可持续发展的动态演变及区域差异[J]. 干旱区地理, 2022, 45(2): 639-649. |
[ Li Lingwei, Bai Yongping, Yang Xuedi, et al. Dynamic evolution and regional differences of sustainable development in Jiziwan of the Yellow River Basin[J]. Arid Land Geography, 2022, 45(2): 639-649. ] | |
[16] | 谷昊鑫, 秦伟山, 赵明明, 等. 黄河流域旅游经济与生态环境协调发展时空演变及影响因素探究[J/OL]. 干旱区地理. [2021-12-10]. http://kns.cnki.net/kcms/detail/65.1103.X.20211011.1526.006.html. |
[ Gu Haoxin, Qin Weishan, Zhao Mingming, et al. Spatial and temporal evolution and influencing factors of coordinated development of tourism economy and ecological environment in the Yellow River Basin[J/OL]. Arid Land Geography. [2021-12-10]. http://kns.cnki.net/kcms/detail/65.1103.X.20211011.1526.006.html. | |
[17] | 金凤君. 黄河流域生态保护与高质量发展的协调推进策略[J]. 改革, 2019(11): 33-39. |
[ Jin Fengjun. Coordinated promotion strategy of ecological protection and high-quality development in the Yellow River Basin[J]. Reform, 2019(11): 33-39. ] | |
[18] | 王金南. 黄河流域生态保护和高质量发展战略思考[J]. 环境保护, 2020, 48(1): 18-21. |
[ Wang Jinnan. A primary framework on protection of ecological environment and realization of high-quality development for the Yellow River Basin[J]. Environmental Protection, 2020, 48(1): 18-21. ] | |
[19] | 任保平. 黄河流域高质量发展的特殊性及其模式选择[J]. 人文杂志, 2020(1): 1-4. |
[ Ren Baoping. Particularity and mode selection of high-quality development in the Yellow River Basin[J]. The Journal of Humanities, 2020(1): 1-4. ] | |
[20] |
Gain A K, Giupponi C. A dynamic assessment of water scarcity risk in the Lower Brahmaputra River Basin: An integrated approach[J]. Ecological Indicators, 2015, 48: 120-131.
doi: 10.1016/j.ecolind.2014.07.034 |
[21] | 刘夏, 张曼, 徐建华, 等. 基于系统动力学模型的塔里木河流域水资源承载力研究[J]. 干旱区地理, 2021, 44(5): 1407-1416. |
[ Liu Xia, Zhang Man, Xu Jianhua, et al. Water resources carrying capacity of Tarim River Basin based on system dynamics model[J]. Arid Land Geography, 2021, 44(5): 1407-1416. ] | |
[22] |
Gohari A, Eslamian S, Mirchi A, et al. Water transfer as a solution to water shortage: A fix that can Backfire[J]. Journal of Hydrology, 2013, 491: 23-39.
doi: 10.1016/j.jhydrol.2013.03.021 |
[23] |
Sivapalan M. Debates-perspectives on socio-hydrology: Changing water systems and the “tyranny of small problems”: Social-hydrology[J]. Water Resources Research, 2015, 51(6): 4795-4805.
doi: 10.1002/2015WR017080 |
[24] |
Evan G R D, Slobodan P S. Global water resources modeling with an intergrated model of the social-economic-environmental system[J]. Advances in Water Resources, 2011, 34(6): 684-700.
doi: 10.1016/j.advwatres.2011.02.010 |
[25] | 李桂军, 李玉龙, 贾晓菁, 等. 北京市水-能源-粮食可持续发展系统动力学模型构建与仿真[J]. 管理评论, 2016, 28(10): 11-26. |
[ Li Guijun, Li Yulong, Jia Xiaojing, et al. Establishment and simulation study of system dynamic model on sustainable development of water-energy-food nexus in Beijing[J]. Management Review, 2016, 28(10): 11-26. ] | |
[26] |
Mehdi Z, Sai H L, Mehran H, et al. The state-of-the-art system dynamics application in integrated water resources modeling[J]. Journal of Environmental Management, 2018, 227: 294-304.
doi: 10.1016/j.jenvman.2018.08.097 |
[27] |
牛方曲, 孙东琪. 资源环境承载力与中国经济发展可持续性模拟[J]. 地理学报, 2019, 74(12): 2604-2613.
doi: 10.11821/dlxb201912013 |
[ Niu Fangqu, Sun Dongqi. Modelling the sustainability of China’s growth based on the resource and environmental carrying capacity[J]. Acta Geographica Sinica, 2019, 74(12): 2604-2613. ]
doi: 10.11821/dlxb201912013 |
|
[28] |
Han T F, Zhang C T, Sun Y, et al. Study on environment-economy-society relationship model of Liaohe River Basin based on multi-agent simulation[J]. Ecological Modelling, 2017, 359: 135-145.
doi: 10.1016/j.ecolmodel.2017.02.016 |
[29] |
Song J X, Tang B, Zhang J L, et al. System dynamics simulation for optimal stream flow regulations under consideration of coordinated development of ecology and socio-economy in the Weihe River Basin, China[J]. Ecological Engineering, 2018, 124: 51-68.
doi: 10.1016/j.ecoleng.2018.09.024 |
[30] |
Yang Z Y, Song J X, Cheng D D, et al. Comprehensive evaluation and scenario simulation for the water resources carrying capacity in Xi’an City, China[J]. Journal of Environmental Management, 2019, 230: 221-233.
doi: 10.1016/j.jenvman.2018.09.085 |
[31] | 周熊勇, 许志端, 郗永勤. 中国节能减排系统动力学模型及政策优化仿真[J]. 系统工程理论与实践, 2018, 38(6): 1422-1444. |
[ Zhou Xiongyong, Xu Zhiduan, Xi Yongqin. The system dynamic model and policy optimized simulation of energy conservation and emission reduction in China[J]. Systems Engineering: Theory & Practice, 2018, 38(6): 1422-1444. ] | |
[32] | 张俊荣, 王孜丹, 汤铃, 等. 基于系统动力学的京津冀碳排放交易政策影响研究[J]. 中国管理科学, 2016, 24(3): 1-8. |
[ Zhang Junrong, Wang Zidan, Tang Ling, et al. The simulation of carbon emission trading system in Beijing-Tianjin-Hebei region: An analysis based on system dynamics[J]. Chinese Journal of Management Science, 2016, 24(3): 1-8. ] | |
[33] | 杨红娟, 张成浩. 基于系统动力学的云南生态文明建设有效路径研究[J]. 中国人口·资源与环境, 2019, 29(2): 16-24. |
[ Yang Hongjuan, Zhang Chenghao. Research on the effective route of ecological civilization construction in Yunnan Province based on system dynamics[J]. China Population, Resources and Environment, 2019, 29(2): 16-24. ] | |
[34] |
Sun Y H, Liu N N, Shang J X, et al. Sustainable utilization of water resources in China: A system dynamics model[J]. Journal of Cleaner Production, 2017, 142: 613-625.
doi: 10.1016/j.jclepro.2016.07.110 |
[35] | 申慧云, 余杰, 张向前, 等. 福建绿色经济高质量发展“经济-社会-环境”复杂系统研究[J]. 科技管理研究, 2020, 40(13): 62-70. |
[ Shen Huiyun, Yu Jie, Zhang Xiangqian, et al. Research on the complex system of “economic-social-environment” for the high quality development of Fujian green economy[J]. Science and Technology Management Research, 2020, 40(13): 62-70. ] | |
[36] |
Zhang Z, Lu W X, Zhao Y, et al. Development tendency analysis and evaluation of the water ecological carrying capacity in the Siping area of Jilin Province in China based on system dynamics and analytic hierarchy process[J]. Ecological Modelling, 2014, 275: 9-21.
doi: 10.1016/j.ecolmodel.2013.11.031 |
[37] |
曹祺文, 鲍超, 顾朝林, 等. 基于水资源约束的中国城镇化SD模型与模拟[J]. 地理研究, 2019, 38(1): 167-180.
doi: 10.11821/dlyj020180274 |
[ Cao Qiwen, Bao Chao, Gu Chaolin, et al. China’s urbanization SD modeling and simulation based on water resource constraints[J]. Geographical Research, 2019, 38(1): 167-180. ]
doi: 10.11821/dlyj020180274 |
|
[38] | 彭昕杰, 成金华, 方传棣. 基于“三线一单”的长江经济带经济-资源-环境协调发展研究[J]. 中国人口·资源与环境, 2021, 31(5): 163-173. |
[ Peng Xinjie, Cheng Jinhua, Fang Chuandi. Coordinated development of economy, resources and environment in the Yangtze River Economic Belt based on “Three Lines and One Order”[J]. China Population, Resources and Environment, 2021, 31(5): 163-173. ] | |
[39] | 顾明瑞, 王帆, 王舒鸿. 基于系统动力学的中国绿色发展政策仿真研究[J]. 中国环境管理, 2021, 13(3): 126-135. |
[ Gu Mingrui, Wang Fan, Wang Shuhong. Simulation of China’s green development policy based on system dynamics[J]. Chinese Journal of Environmental Management, 2021, 13(3): 126-135. ] | |
[40] | 柯小玲, 郭海湘, 龚晓光, 等. 基于系统动力学的武汉市生态安全预警仿真研究[J]. 管理评论, 2020, 32(4): 262-273. |
[ Ke Xiaoling, Guo Haixiang, Gong Xiaoguang, et al. Early warning simulation of urban ecological security based on system dynamics in Wuhan City[J]. Management Review, 2020, 32(4): 262-273. ] | |
[41] |
郭玲玲, 武春友, 于惊涛, 等. 中国绿色增长模式的动态仿真分析[J]. 系统工程理论与实践, 2017, 37(8): 2119-2130.
doi: 10.12011/1000-6788(2017)08-2119-12 |
[ Guo Lingling, Wu Chunyou, Yu Jingtao, et al. Dynamic simulation analysis of green growth mode in China[J]. Systems Engineering: Theory & Practice, 2017, 37(8): 2119-2130. ]
doi: 10.12011/1000-6788(2017)08-2119-12 |
[1] | 任贵秀, 刘凯. 黄河流域绿色创新的时空演化特征及影响因素分析[J]. 干旱区地理, 2024, 47(1): 158-169. |
[2] | 王松茂, 宁文萍, 牛金兰, 安康. 黄河流域城市生态韧性时空分异及收敛研究——基于七大城市群61个城市的实证分析[J]. 干旱区地理, 2024, 47(1): 93-103. |
[3] | 周成, 赵亚玲, 张旭红, 周霖, 任敏敏. 黄河流域城市生态韧性与效率时空演化特征及协调发展分析[J]. 干旱区地理, 2023, 46(9): 1514-1523. |
[4] | 李建辉, 陈琳, 党争. 黄河流域爱国主义教育基地空间格局及影响因素研究[J]. 干旱区地理, 2023, 46(9): 1536-1544. |
[5] | 张昊, 韩增林, 乔国荣, 王辉, 王宏业, 段冶. 黄河流域城市间旅游经济联系格局及影响因素研究[J]. 干旱区地理, 2023, 46(8): 1344-1354. |
[6] | 柏荷, 明義森, 刘启航, 黄昌. 基于MGWR模型的黄河流域GPM卫星降水数据降尺度研究[J]. 干旱区地理, 2023, 46(7): 1052-1062. |
[7] | 苏航, 谷娇, 赵金丽. 多尺度视角下黄河流域城市信息网络空间结构演化研究[J]. 干旱区地理, 2023, 46(7): 1206-1216. |
[8] | 董丽, 王满旺, 东梅. 基于生态足迹法的宁夏生态移民区可持续发展能力研究[J]. 干旱区地理, 2023, 46(6): 1004-1012. |
[9] | 陈勉为, 冯丹, 张仕凯, 江雨, 张新兰. 基于RSEI和ANN-CA-Markov模型的伊宁市生态环境质量动态监测及预测研究[J]. 干旱区地理, 2023, 46(6): 911-921. |
[10] | 张梦圆, 荣丽华, 李伊彤, 党慧. 基于“三生”空间的农牧交错区城市土地利用转型及生态环境效应分析——以包头市为例[J]. 干旱区地理, 2023, 46(6): 958-967. |
[11] | 董洁芳, 张凯莉, 屈学书, 阮征. 黄河流域城市生态福利绩效测算及驱动因素研究[J]. 干旱区地理, 2023, 46(5): 834-845. |
[12] | 孟望生,刘华桢,张扬. 黄河流域七大城市群绿色发展效率测度及特征分析[J]. 干旱区地理, 2023, 46(5): 846-856. |
[13] | 董建红, 张志斌, 刘奔腾, 张新红. “三生”空间视角下西北地区生态环境质量分异机制的地理探测[J]. 干旱区地理, 2023, 46(4): 515-526. |
[14] | 许昕彤,朱丽,吕潇雨,郭浩. MSWEP降水产品在黄河流域气象干旱监测中的适用性评价[J]. 干旱区地理, 2023, 46(3): 371-384. |
[15] | 田小波,胡静,贾垚焱,朱磊. 高质量发展阶段旅游业发展水平空间分异成因探测——基于因素分解的黄河流域实证[J]. 干旱区地理, 2023, 46(3): 460-470. |
|