干旱区地理 ›› 2022, Vol. 45 ›› Issue (3): 890-900.doi: 10.12118/j.issn.1000-6060.2021.402
曹刚1(),毕淑海2,赵明新1,曹素芳1,王玮1,牛济军2,李红旭1()
收稿日期:
2021-09-10
修回日期:
2021-12-15
出版日期:
2022-05-25
发布日期:
2022-05-31
通讯作者:
李红旭
作者简介:
曹刚(1984-),男,博士,副研究员,主要从事果树土壤水肥高效利用等方面的研究. E-mail: 基金资助:
CAO Gang1(),BI Shuhai2,ZHAO Mingxin1,CAO Sufang1,WANG Wei1,NIU Jijun2,LI Hongxu1()
Received:
2021-09-10
Revised:
2021-12-15
Online:
2022-05-25
Published:
2022-05-31
Contact:
Hongxu LI
摘要:
在干旱沿黄灌区开展不同覆盖材料配合滴灌的灌溉保墒方式下,进一步研究了不同覆盖方式对梨园全生育期的土壤理化性状和养分含量变化影响,分析了土壤温度、水分、pH等和矿质营养元素间的相互关系,对覆盖后的土壤质量进行了综合性评价。试验处理分为无覆盖对照(T1)、园艺地布覆盖(T2)、玉米秸秆覆盖(T3)和黑地膜覆盖(T4)4个处理;试验设计为随机区组设计,每个处理小区均为167株梨树(约占地667 m2),重复3次;各小区土样分0~20 cm、20~40 cm、40~60 cm土层取样。结果表明:(1) 园艺地布和黑地膜覆盖处理有一定的增温效应,而玉米秸秆覆盖有较好的降温和稳温效应,且增墒效应明显,土壤含水率比其他3种处理显著提高了1.0%~2.7%。(2) 相较无覆盖处理,黑地膜覆盖可提升表层土壤pH,并加速表层土壤有机质的分解,有机质含量较无覆盖处理下降33.1%;玉米秸秆覆盖可显著降低各土层的土壤pH,降低范围为1.8%~4.6%,并促进0~20 cm土层有机质的提升,土壤有机质含量增加12.2%;园艺地布覆盖下0~40 cm土层内土壤有机质含量和全盐量均有降低。(3) 黑地膜覆盖下0~20 cm和20~40 cm土层的碱解氮含量分别为73.00 mg·g-1和64.53 mg·g-1,均显著地高于无覆盖处理,无覆盖条件下土壤碱解氮在深层(40~60 cm土层)积累较多,显著地高于玉米秸秆和黑地膜覆盖;各处理0~20 cm和20~40 cm土层速效磷含量差异显著,大小顺序均为T4>T3>T2>T1,玉米秸秆覆盖可提升土壤速效钾和速效铁的含量。(4) 进行主成分分析表明不同覆盖方式对梨园浅层土壤环境因子的影响要明显大于深层土壤,在0~40 cm土层内各覆盖处理效果均好于无覆盖处理,其中玉米秸秆覆盖在0~20 cm和20~40 cm土层综合得分分别为1.189和0.326,覆盖效果最佳。
曹刚,毕淑海,赵明新,曹素芳,王玮,牛济军,李红旭. 干旱区梨园不同覆盖条件下土壤环境因子综合性评价研究[J]. 干旱区地理, 2022, 45(3): 890-900.
CAO Gang,BI Shuhai,ZHAO Mingxin,CAO Sufang,WANG Wei,NIU Jijun,LI Hongxu. Comprehensive evaluation of soil environmental factors under different mulching conditions in pear orchard in arid region[J]. Arid Land Geography, 2022, 45(3): 890-900.
表1
不同土层土壤平均温度"
土层/cm | 处理 | 月平均温度/℃ | 年均 温度/℃ | 变异 系数/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
3月 | 4月 | 5月 | 6月 | 7月 | 8月 | 9月 | 10月 | ||||
0~20 | T1 | 8.0±0.22a | 13.0±0.03b | 15.5±0.14c | 20.5±0.08c | 22.9±0.06a | 22.4±0.17a | 16.8±0.01a | 10.4±0.26a | 16.2 | 34.1 |
T2 | 6.8±0.11b | 13.9±0.02a | 16.2±0.07b | 21.7±0.11a | 21.3±0.02c | 18.2±0.13d | 14.2±0.06d | 8.1±0.06d | 15.1 | 36.6 | |
T3 | 4.5±0.18d | 10.7±0.08d | 14.5±0.05d | 18.8±0.09d | 20.8±0.09d | 20.7±0.05b | 16.2±0.09b | 10.0±0.09b | 14.5 | 39.8 | |
T4 | 5.6±0.22c | 11.9±0.04c | 16.5±0.13a | 21.6±0.07b | 21.5±0.04b | 19.6±0.12c | 15.8±0.07c | 9.5±0.08c | 15.3 | 38.2 | |
20~40 | T1 | 7.0±0.17a | 12.2±0.05b | 15.2±0.11c | 19.5±0.07c | 21.7±0.05b | 21.9±0.11a | 16.9±0.09a | 11.4±0.18a | 15.7 | 33.7 |
T2 | 6.6±0.09b | 13.6±0.07a | 16.8±0.06a | 21.6±0.08a | 22.1±0.04a | 20.4±0.10c | 16.6±0.06b | 11.2±0.09ab | 16.1 | 33.7 | |
T3 | 2.8±0.17d | 10.1±0.13d | 14.3±0.05d | 18.5±0.08d | 20.6±0.10d | 20.8±0.06b | 16.6±0.10b | 11.1±0.07b | 14.4 | 42.9 | |
T4 | 4.7±0.12c | 10.7±0.10c | 16.5±0.03b | 20.7±0.06b | 21.2±0.03c | 20.0±0.12d | 15.9±0.06c | 10.1±0.05c | 15.0 | 39.7 | |
40~60 | T1 | 6.0±0.12c | 11.3±0.12c | 14.6±0.10b | 18.5±0.07c | 20.9±0.06b | 21.6±0.07a | 17.2±0.08b | 12.5±0.18a | 15.3 | 34.5 |
T2 | 7.5±0.16a | 13.9±0.10a | 16.1±0.05a | 20.4±0.08a | 21.4±0.04a | 21.4±0.05b | 17.4±0.05a | 11.9±0.07c | 16.3 | 30.6 | |
T3 | 1.7±0.23d | 9.7±0.05d | 14.0±0.06c | 18.1±0.08d | 20.3±0.09c | 20.9±0.08c | 17.0±0.06b | 12.1±0.09b | 14.2 | 44.9 | |
T4 | 7.0±0.19b | 12.2±0.03b | 16.1±0.02a | 20.0±0.06b | 20.8±0.04b | 20.2±0.10d | 16.4±0.05c | 11.3±0.04d | 15.5 | 32.0 | |
0~60 | T1 | 6.7±0.14a | 11.8±0.04b | 14.9±0.11c | 19.1±0.07c | 21.5±0.05a | 21.8±0.10a | 17.1±0.05a | 10.9±0.07c | 15.5 | 34.9 |
T2 | 6.9±0.18a | 13.8±0.07a | 16.2±0.07a | 20.9±0.09a | 21.5±0.05a | 20.1±0.08c | 16.2±0.06c | 11.9±0.08a | 15.9 | 31.4 | |
T3 | 2.5±0.19c | 9.8±0.07d | 14.0±0.05d | 18.1±0.08d | 20.2±0.09c | 20.7±0.05b | 16.7±0.09b | 11.6±0.19b | 14.2 | 43.1 | |
T4 | 5.9±0.14b | 11.7±0.10c | 16.1±0.03b | 20.2±0.06b | 20.8±0.03b | 19.9±0.11d | 16.2±0.05c | 10.8±0.05c | 15.2 | 35.0 | |
变异系数/% | 35.98 | 13.23 | 6.72 | 6.57 | 3.90 | 4.66 | 4.39 | 11.19 |
表2
不同土层土壤含水量差异"
土层/cm | 处理 | 土壤含水量/% | 变异 系数/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|
萌芽期 | 花前期 | 花后期 | 幼果期 | 果实膨大期 | 采收前 | 采收后 | 年均 | |||
0~20 | T1 | 11.6±0.31b | 16.4±0.44bc | 12.9±0.43b | 12.8±1.65b | 10.7±1.33b | 10.1±3.27a | 9.2±0.99b | 12.0 | 18.4 |
T2 | 12.7±2.92ab | 15.6±0.39c | 12.5±0.17b | 13.7±0.28ab | 13.1±0.40a | 12.4±1.76a | 12.3±1.85a | 13.2 | 8.3 | |
T3 | 15.6±0.50a | 20.0±0.44a | 16.7±0.55a | 15.0±0.17a | 15.0±0.98a | 12.9±3.06a | 13.3±1.20a | 15.5 | 14.1 | |
T4 | 13.8±0.23ab | 17.0±0.73b | 13.1±1.85b | 15.1±0.61a | 14.1±0.62a | 14.0±1.07a | 12.3±1.15a | 14.2 | 9.8 | |
20~40 | T1 | 12.5±0.23b | 17.7±0.62ab | 12.3±4.34a | 11.8±0.35b | 10.9±0.54a | 10.6±1.42b | 10.4±1.24a | 12.3 | 18.7 |
T2 | 12.2±0.26b | 16.4±0.39b | 11.9±0.05a | 12.2±0.19b | 9.9±1.78a | 14.0±0.66ab | 11.3±1.32a | 12.6 | 15.4 | |
T3 | 15.4±0.75a | 18.3±1.30a | 15.9±0.56a | 10.9±0.16b | 9.1±0.42a | 15.2±2.69a | 13.3±2.40a | 14.0 | 20.9 | |
T4 | 12.5±0.38b | 17.2±0.84ab | 14.8±1.32a | 13.9±1.29a | 9.7±0.13a | 14.6±1.39a | 11.5±0.98a | 13.4 | 16.9 | |
40~60 | T1 | 10.5±0.51c | 17.9±0.06ab | 9.7±0.22d | 7.6±0.19d | 10.4±2.11b | 10.0±2.00a | 10.5±0.43ab | 10.9 | 27.5 |
T2 | 16.0±0.61a | 18.7±0.90a | 13.7±0.31a | 9.7±0.35c | 8.5±0.25b | 12.1±2.96a | 9.1±1.22b | 12.5 | 28.2 | |
T3 | 13.3±0.76b | 17.1±0.21b | 12.6±0.31b | 11.0±1.07b | 15.1±1.56a | 15.0±3.41a | 10.9±0.87ab | 13.6 | 15.6 | |
T4 | 12.4±0.94b | 17.9±0.16ab | 11.4±0.53c | 15.4±0.87a | 9.9±0.81b | 10.8±1.20a | 11.5±0.58a | 12.5 | 23.3 | |
0~60 | T1 | 11.5±0.96a | 17.3±0.47a | 11.6±1.70b | 10.7±2.76a | 10.7±2.48a | 10.2±0.32b | 11.8±1.39ab | 11.7 | 21.7 |
T2 | 13.6±1.24a | 16.9±0.81a | 12.7±0.79ab | 11.9±1.70a | 10.5±0.25a | 12.8±2.01a | 12.5±1.64a | 12.8 | 16.6 | |
T3 | 14.7±2.07a | 18.5±1.61a | 15.1±0.93a | 12.3±2.30a | 13.1±2.30a | 14.3±1.02a | 10.0±0.72b | 14.4 | 14.8 | |
T4 | 12.9±0.81a | 17.4±1.46a | 14.8±2.17ab | 13.1±2.00a | 11.2±3.44a | 13.1±1.24a | 10.9±0.46ab | 13.4 | 16.3 | |
变异系数/% | 12.0 | 6.0 | 13.7 | 15.5 | 18.1 | 14.4 | 11.3 | 8.8 |
表3
各指标相关系数矩阵"
指标 | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12 | X13 | X14 | X15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X1 | 1.000 | -0.641 | 0.519 | 0.147 | -0.101 | -0.017 | -0.114 | 0.098 | -0.323 | -0.115 | -0.503 | -0.333 | -0.283 | -0.181 | -0.167 |
X2 | 1.000 | -0.758 | 0.195 | 0.415 | 0.413 | 0.603 | 0.400 | 0.615 | 0.398 | 0.702 | 0.622 | 0.695 | 0.644 | 0.518 | |
X3 | 1.000 | -0.258 | -0.590 | -0.445 | -0.640 | -0.248 | -0.476 | -0.567 | -0.602 | -0.653 | -0.551 | -0.590 | -0.652 | ||
X4 | 1.000 | 0.324 | 0.728 | 0.613 | 0.620 | 0.430 | 0.646 | 0.467 | 0.457 | 0.580 | 0.514 | 0.455 | |||
X5 | 1.000 | 0.755 | 0.834 | 0.293 | 0.196 | 0.591 | 0.563 | 0.767 | 0.645 | 0.829 | 0.884 | ||||
X6 | 1.000 | 0.917 | 0.593 | 0.270 | 0.828 | 0.756 | 0.874 | 0.869 | 0.929 | 0.840 | |||||
X7 | 1.000 | 0.604 | 0.478 | 0.715 | 0.742 | 0.867 | 0.848 | 0.929 | 0.883 | ||||||
X8 | 1.000 | 0.442 | 0.632 | 0.651 | 0.592 | 0.720 | 0.549 | 0.524 | |||||||
X9 | 1.000 | 0.092 | 0.319 | 0.260 | 0.325 | 0.309 | 0.182 | ||||||||
X10 | 1.000 | 0.839 | 0.877 | 0.847 | 0.782 | 0.786 | |||||||||
X11 | 1.000 | 0.924 | 0.933 | 0.821 | 0.747 | ||||||||||
X12 | 1.000 | 0.937 | 0.926 | 0.907 | |||||||||||
X13 | 1.000 | 0.914 | 0.845 | ||||||||||||
X14 | 1.000 | 0.872 | |||||||||||||
X15 | 1.000 |
表4
主成分分析结果"
指标 | 主成分 | ||
---|---|---|---|
第一主成分 | 第二主成分 | 第三主成分 | |
土壤温度 | 0.053 | -0.403 | 0.167 |
土壤含水率 | -0.071 | 0.327 | 0.049 |
土壤pH | -0.028 | -0.245 | 0.089 |
电导率 | -0.059 | -0.134 | 0.411 |
土壤有机质 | 0.213 | -0.044 | -0.213 |
土壤全氮 | 0.135 | -0.123 | 0.061 |
土壤全磷 | 0.089 | -0.010 | 0.068 |
土壤全钾 | -0.073 | -0.065 | 0.395 |
土壤全铁 | -0.257 | 0.260 | 0.439 |
土壤碱解氮 | 0.143 | -0.091 | 0.002 |
土壤速效磷 | 0.067 | 0.101 | 0.007 |
土壤速效钾 | 0.151 | 0.021 | -0.088 |
土壤速效铁 | 0.084 | 0.019 | 0.057 |
土壤铵态氮 | 0.143 | -0.013 | -0.045 |
土壤硝态氮 | 0.193 | -0.041 | -0.138 |
特征值 | 9.512 | 63.414 | 63.414 |
贡献率/% | 1.984 | 13.226 | 76.640 |
累积贡献率/% | 1.319 | 8.795 | 85.435 |
表5
不同处理各主成分得分及综合得分"
土层/cm | 处理 | 得分 | 排名 | |||
---|---|---|---|---|---|---|
第一主成分 | 第二主成分 | 第三主成分 | 综合 | |||
0~20 | T1 | 0.753 | -0.192 | 0.047 | 0.608 | 4 |
T2 | 0.980 | -0.026 | -0.109 | 0.845 | 2 | |
T3 | 0.860 | 0.313 | 0.016 | 1.189 | 1 | |
T4 | 0.298 | 0.210 | 0.167 | 0.675 | 3 | |
20~40 | T1 | -0.166 | -0.100 | -0.002 | -0.267 | 8 |
T2 | 0.015 | -0.103 | -0.004 | -0.091 | 6 | |
T3 | 0.242 | 0.174 | -0.090 | 0.326 | 5 | |
T4 | -0.402 | 0.088 | 0.139 | -0.175 | 7 | |
40~60 | T1 | -0.355 | -0.129 | -0.066 | -0.551 | 9 |
T2 | -0.754 | -0.073 | 0.031 | -0.796 | 12 | |
T3 | -0.878 | 0.179 | -0.033 | -0.731 | 11 | |
T4 | -0.594 | -0.035 | -0.095 | -0.724 | 10 |
[1] | 山仑, 邓西平, 张岁岐. 生物节水研究现状及展望[J]. 中国科学基金, 2006, 20(2): 66-71. |
[ Shan Lun, Deng Xiping, Zhang Suiqi. Advances in biological water-saving research: Challenge and perspectives[J]. Bulletin of National Natural Science Foundation of China, 2006, 20(2): 66-71. ] | |
[2] | 王志超, 李仙岳, 史海滨, 等. 覆膜年限及灌水方法对河套灌区农膜残留的影响[J]. 农业工程学报, 2017, 33(14): 159-165. |
[ Wang Zhichao, Li Xianyue, Shi Haibin, et al. Effects of mulching years and irrigation methods on residual plastic film in Hetao Irrigation District[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(14): 159-165. ] | |
[3] | 谢孟林, 查丽, 郭萍, 等. 垄作覆膜对川中丘区土壤物理性状和春玉米产量的影响[J]. 干旱地区农业研究, 2017, 35(2): 31-38. |
[ Xie Menglin, Zha Li, Guo Ping, et al. Effects of different ridging and mulching measures on soil physical properties and yield of spring maize in hilly area of central Sichuan Basin[J]. Agricultural Research in the Arid Areas, 2017, 35(2): 31-38. ] | |
[4] |
查丽, 谢孟林, 朱敏, 等. 垄作与覆膜对川中丘陵春玉米根系分布及产量的影响[J]. 应用生态学报, 2016, 27(3): 855-862.
doi: 10.13287/j.1001-9332.201603.023 pmid: 29726191 |
[ Zha Li, Xie Menglin, Zhu Min, et al. Effects of ridge-cultivation and plastic film mulching on root distribution and yield of spring maize in hilly area of central Sichuan Basin, China[J]. Chinese Journal of Applied Ecology, 2016, 27(3): 855-862. ]
doi: 10.13287/j.1001-9332.201603.023 pmid: 29726191 |
|
[5] | 林超文, 罗春燕, 庞良玉, 等. 不同耕作和覆盖方式对紫色丘陵区坡耕地水土及养分流失的影响[J]. 生态学报, 2010, 30(22): 6091-6101. |
[ Lin Chaowen, Luo Chunyan, Pang Liangyu, et al. Effects of different cultivation and mulching methods on soil erosion and nutrient losses from a purple soil of sloping land[J]. Acta Ecologica Sinica, 2010, 30(22): 6091-6101. ] | |
[6] | 牛新胜, 马永良, 牛灵安, 等. 玉米秸秆覆盖冬小麦免耕播种对土壤理化性状的影响[J]. 华北农学报, 2007, 22(增刊2): 158-163. |
[ Niu Xinsheng, Ma Yongliang, Niu Ling’an, et al. Effects of no-tillage planting for winter wheat with maize straw mulching on soil physicochemical properties[J]. Acta Agriculturae Boreali-Sinica, 2007, 22(Suppl. 2): 158-163. ] | |
[7] | 徐福利, 梁银丽, 汪有科, 等. 秸杆覆盖保护耕作法土壤水分和温度变化及玉米产量效应[J]. 土壤通报, 2006, 37(4): 648-650. |
[ Xu Fuli, Liang Yinli, Wang Youke, et al. Effect of stock mulch conservation method on soil moisture, soil temperature and corn yield[J]. Chinese Journal of Soil Science, 2006, 37(4): 648-650. ] | |
[8] | 严奉君, 孙永健, 马均, 等. 灌溉方式与秸秆覆盖优化施氮模式对秸秆腐熟特征及水稻氮素利用的影响[J]. 中国生态农业学报, 2016, 24(11): 1435-1444. |
[ Yan Fengjun, Sun Yongjian, Ma Jun, et al. Effects of irrigation method and straw mulch-nitrogen management pattern on straw decomposition characteristics and nitrogen utilization of hybrid rice[J]. Chinese Journal of Eco-Agriculture, 2016, 24(11): 1435-1444. ] | |
[9] | 张桂玲. 秸秆腐熟物覆盖对板栗园土壤微生物、养分含量和产量的影响[J]. 果树学报, 2012, 29(6): 1057-1062. |
[ Zhang Gunling. Effects of straw hydrolysate mulching on soil microbial quantities, soil nutrient contents and yield in chestnut orchard[J]. Journal of Fruit Science, 2012, 29(6): 1057-1062. ] | |
[10] | 邓家林. 新型覆盖材料--LS地布在果树节水抗旱上的应用效果[J]. 中国果业信息, 2010, 27(7): 54. |
[ Deng Jialin. Application effect of a new covering material: LS gardening cloth on water saving and drought resistance of fruit trees[J]. China Fruit News, 2010, 27(7): 54. ] | |
[11] | 郑悦, 李会科, 张泰然, 等. 园艺地布微垄覆盖对渭北旱地矮化苹果根域土壤水分的影响[J]. 西北农业学报, 2019, 28(4): 631-640. |
[ Zheng Yue, Li Huike, Zhang Tairan, et al. Effects of black ground fabric micro-ridge mulching on root zone soil moisture of dwarf apple in Weibei dryland, China[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2019, 28(4): 631-640. ] | |
[12] | 彭正凯, 李玲玲, 谢军红, 等. 不同耕作措施对旱地作物生育期农田耗水结构和水分利用效率的影响[J]. 水土保持学报, 2018, 32(5): 214-221. |
[ Peng Zhengkai, Li Lingling, Xie Junhong, et al. Effects of different tillage practices on water consumption structure and water use efficiency during crop growth period in arid farmland[J]. Journal of Soil and Water Conservation, 2018, 32(5): 214-221. ] | |
[13] | 刘匣. 基于田间试验和Aquacrop模型的覆膜冬小麦生长动态和土壤水分模拟分析[D]. 杨凌: 西北农林科技大学, 2017. |
[ Liu Xia. Evaluation analysis of winter wheat growing development and soil moisture under plastic mulching based on field experiment and Aquacrop model[D]. Yangling: Northwest Agriculture & Forestry University, 2017. ] | |
[14] | 程宏波, 牛建彪, 柴守玺, 等. 不同覆盖材料和方式对旱地春小麦产量及土壤水温环境的影响[J]. 草业学报, 2016, 25(2): 47-57. |
[ Cheng Hongbo, Niu Jianbiao, Chai Shouxi, et al. Effect of different mulching materials and methods on soil moisture and temperature and grain yield of dryland spring wheat in northwestern China[J]. Acta Prataculturae Sinica, 2016, 25(2): 47-57. ] | |
[15] | Leng H M, Wan F X, Zhang Y T. Study on relationship of root morphological characters and biomass of Cupressus lusitanica in different age classes[J]. Agricultural Science & Technology, 2013, 14(12): 1830-1833, 1838. |
[16] | Luis H B, Juan D L. Total fine root mass and nutrient content in forest ecosyetems (Pinus patula Schltdl and Cham Cupressus lusitanica Mill and Quercus humboldtii Bonpl.) from Piedras Blancas, Antioquia-Colombia[J]. Revista Facultad Nacional De Agronomía, 2005, 58(2): 2007-2930. |
[17] |
于显枫, 张绪成, 方彦杰, 等. 减氮追施和增密对全膜覆盖垄上微沟马铃薯水分利用及生长的影响[J]. 作物学报, 2019, 45(5): 764-776.
doi: 10.3724/SP.J.1006.2019.84014 |
[ Yu Xianfeng, Zhang Xucheng, Fang Yanjie, et al. Effects of top dressing with reduced nitrogen fertilizer and density enhancement on water use efficiency and growth of potatoes planted in mini-ditch on ridges with plastic mulching[J]. Acta Agronomica Sinica, 2019, 45(5): 764-776. ]
doi: 10.3724/SP.J.1006.2019.84014 |
|
[18] | 李玲玲, 黄高宝, 张仁陟, 等. 不同保护性耕作措施对旱作农田土壤水分的影响[J]. 生态学报, 2005, 25(9): 2326-2332. |
[ Li Lingling, Huang Gaobao, Zhang Renzhi, et al. Effects of conservation tillage on soil water regimes in rainfed areas[J]. Acta Ecologica Sinica, 2005, 25(9): 2326-2332. ] | |
[19] | 张绪成, 王红丽, 于显枫, 等. 半干旱区全膜覆盖垄沟间作种植马铃薯和豆科作物的水热及产量效应[J]. 中国农业科学, 2016, 49(3): 468-481. |
[ Zhang Xucheng, Wang Hongli, Yu Xianfu, et al. Effect of potato and beans intercropping with whole field plastics mulching and ridge-furrow planting on soil thermal-moisture status and crop yield on semi-arid area[J]. Scientia Agricultura Sinica, 2016, 49(3): 468-481. ] | |
[20] | 赵德英. 梨园树盘覆盖的土壤生态效应及树体生理响应研究[D]. 北京: 中国农业科学院, 2013. |
[ Zhao Deying. Study on the soil ecological effects and physiological response in different groundcover pear tree[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. ] | |
[21] | 王佳文, 彭杰, 刘新路, 等. 基于电磁感应数据的膜下滴灌土壤水分动态变化研究[J]. 干旱区地理, 2021, 44(1): 250-257. |
[ Wang Jiawen, Peng Jie, Liu Xinlu, et al. Dynamic variation of soil moisture in field with drip irrigation under film using electromagnetic induction data[J]. Arid Land Geography, 2021, 44(1): 250-257. ] | |
[22] |
陈伟, 王红阳, 王志坚, 等. 黄土丘陵区香梨园土壤水分、养分分布特征及其与产量的关系[J]. 应用生态学报, 2021, 32(9): 3159-3166.
doi: 10.13287/j.1001-9332.202109.028 pmid: 34658201 |
[ Chen Wei, Wang Hongyang, Wang Zhijian, et al. Distribution characteristics of soil water and nutrients in pear orchard and their relationship with yields in loess hilly region[J]. Chinese Journal of Applied Ecology, 2021, 32(9): 3159-3166. ]
doi: 10.13287/j.1001-9332.202109.028 pmid: 34658201 |
|
[23] | 周旭姣, 王琦, 张登奎, 等. 基于SCS-CN模型的半干旱黄土高原区秸秆炭覆盖集雨垄径流预测[J]. 干旱区地理, 2021, 44(1): 99-108. |
[ Zhou Xujiao, Wang Qi, Zhang Dengkui, et al. Runoff estimation of ridge-furrow rainwater harvesting with maize straw biochar application based on soil conservation service curve number (SCS-CN) model in semiarid regions of China[J]. Arid Land Geography, 2021, 44(1): 99-108. ] | |
[24] | 莫志成. 土壤有机质的加热容量法快速检测分析[J]. 工程技术研究, 2019, 15(125): 251-252. |
[ Mo Zhicheng. Rapid detection and analysis of soil organic matter by heating capacity method[J]. Engineering and Technology Research, 2019, 15(125): 251-252. ] | |
[25] | 张英利, 许安民, 尚浩博, 等. AA3型连续流动分析仪测定土壤和植物全氮的方法研究[J]. 西北农林科技大学学报(自然科学版), 2006, 34(10): 128-132. |
[ Zhang Yingli, Xu Anmin, Shang Haobo, et al. Determination study of total nitrogen in soil and plant by continuous flow analytical system[J]. Journal of Northwest A & F University (Natural Science Edition), 2006, 34(10): 128-132. ] | |
[26] | 宋海星, 李生秀. 根系的吸收作用及土壤水分对硝态氮、铵态氮分布的影响[J]. 中国农业科学, 2005, 38(1): 96-101. |
[ Song Haixing, Li Shengxiu. Effects of root uptake function and soil water on NO3--N and NH4+-N distribution[J]. Scientia Agricultura Sinica, 2005, 38(1): 96-101. ] | |
[27] | 叶峻. 电感耦合等离子体原子发射光谱法(ICP-AES)测定不同品种山药中矿物质元素与对比研究[J]. 中国无机分析化学, 2014, 4(4): 60-61. |
[ Ye Jun. Determination of trace mineal elements in Chinese yam by microwave digestion inductively coupled plasma atomic emission spectrometry (ICP-AES) and its comparative study[J]. Chinese Journal of Inorganic Analytical Chemistry, 2014, 4(4): 60-61. ] | |
[28] | 王改玲, 石生新, 王青杵, 等. 晋北黄土丘陵区不同林草措施的蓄水保土和土壤水分效应研究[J]. 干旱区资源与环境, 2012, 26(11): 172-177. |
[ Wang Gailing, Shi Shengxin, Wang Qingchu, et al. Effect of different forest and grass vegetation on soil and water conservation and soil moisture in loess hilly area in northern Shanxi Province[J]. Journal of Arid Land Resources and Environment, 2012, 26(11): 172-177. ] | |
[29] | 路海东, 薛吉全, 郝引川, 等. 黑色地膜覆盖对旱地玉米土壤环境和植株生长的影响[J]. 生态学报, 2016, 36(7): 1997-2004. |
[ Lu Haidong, Xue Jiquan, Hao Yinchuan, et al. Effects of black film mulching on soil environment and maize growth in dry land[J]. Acta Ecological Sinica, 2016, 36(7): 1997-2004. ] | |
[30] | 王永鹏. 秸秆还田与地膜覆盖耦合对玉米产量及土壤有机质平衡的影响[D]. 兰州: 兰州大学, 2014. |
[ Wang Yongpeng. Effect of straw returning and plastic film mulching coupling on maize yield and the balance of organic matter in the Loess Plateau[D]. Lanzhou: Lanzhou University, 2014. ] | |
[31] | 沈晓燕, 王永峰, 温亚茹, 等. 园艺地布在软籽石榴园生产管理中的应用效果[J]. 果树学报, 2017, 34(增刊): 147-151. |
[ Shen Xiaoyan, Wang Yongfeng, Wen Yaru, et al. Application effect of garden cloth in the production and management of soft seed pomegranate garden[J]. Journal of Fruit Science, 2017, 34(Suppl.): 147-151. ] | |
[32] | 周建国, 生静雅. 园艺地布在现代果园行间管理中的应用[J]. 安徽农业科学, 2013, 41(30): 11972-11973. |
[ Zhou Jianguo, Sheng jingya. Application of groundcover in modern orchard intercropping management[J]. Journal of Anhui Agricultural Sciences, 2013, 41(30): 11972-11973. ] | |
[33] | 杨熠路, 胡枫, 倪照君, 等. 园艺地布覆盖对桃园土壤和桃果实品质的影响[J]. 中国果树, 2021(8): 24-30. |
[ Yang Yilu, Hu Feng, Ni Zhaojun, et al. Effects of black ground fabric mulching on fruit quality and soil in peach orchard[J]. China Fruits, 2021(8): 24-30. ] | |
[34] | 朱高立, 黄炎和, 林金石, 等. 模拟降雨条件下秸秆覆盖对崩积体侵蚀产流产沙的影响[J]. 水土保持学报, 2015, 29(3): 27-31, 37. |
[ Zhu Gaoli, Huang Yanhe, Lin Jinshi, et al. Effect of straw mulch on colluvial soil erosion and yield of runoff and sediment under simulated rainfall[J]. Journal of Soil and Water Conservation, 2015, 29(3): 27-31, 37. ] | |
[35] | 李慧, 靳志锋, 岳胜如. 冻融期不同地表覆盖模式对土壤水分的影响[J]. 节水灌溉, 2018, 278(10): 29-31, 37. |
[ Li Hui, Jin Zhifeng, Yue Shengru. Effects of different soil surface mulching method during freezing-thawing period on soil water[J]. Water Saving Irrigation, 2018, 278(10): 29-31, 37. ] | |
[36] | 徐锡蒙, 郑粉莉, 吴红艳, 等. 玉米秸秆覆盖缓冲带对细沟侵蚀及其水动力学特征的影响[J]. 农业工程学报, 2015, 31(24): 111-119. |
[ Xu Ximeng, Zheng Fengli, Wu Hongyan, et al. Impacts of cornstalk mulching buffer strip on rill erosion and its hydrodynamic character[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(24): 111-119. ] | |
[37] | 胥生荣, 张恩和, 马瑞丽, 等. 覆盖对枸杞根系土壤环境和水分利用的影响[J]. 草业学报, 2019, 28(2): 12-22. |
[ Xu Shengrong, Zhang Enhe, Ma Ruili, et al. Effects of mulching on soil environment and water utilization by roots of Lycium barbarum[J]. Acta Prataculturae Sinica, 2019, 28(2): 12-22. ] | |
[38] |
Lima H A F, Filho C F F, Pimentel M M, et al. Geology, petrology and geochronology of the layered mafic-ultramafic intrusions in the Porto Nacional area, central Brazil[J]. Journal of South American Earth Sciences, 2008, 26(3): 300-317.
doi: 10.1016/j.jsames.2008.08.001 |
[39] | Zhang G S, Chan K Y, Li G D, et al. Effect of straw and plastic film management under contrasting tillage practices on the physical properties of an erodible loess soil[J]. Soil & Tillage Research, 2008, 98(2): 113-119. |
[40] | Wuest S B. Surface versus incorporated residue effects on water-stable aggregates[J]. Soil & Tillage Research, 2007, 96(1-2): 124-130. |
[41] | 李升东, 王法宏, 司纪升, 等. 耕作方式对土壤微生物和土壤肥力的影响[J]. 生态环境学报, 2009, 18(5): 1961-1964. |
[ Li Shengdong, Wang Fahong, Si Jisheng, et al. Effect of different farming methods on soil microbial biomass and soil fertility[J]. Ecology and Environmental Sciences, 2009, 18(5): 1961-1964. ] | |
[42] | 郑华斌, 彭少兵, 唐启源, 等. 免耕与秸杆覆盖对土壤特性、玉米生长发育及产量的影响[J]. 作物研究, 2007, 21(增刊1): 634-638. |
[ Zheng Huabin, Peng Shaobing, Tang Qiyuan, et al. Effects of no-tillage and straw mulching on soil characteristics, growth and yield of maize[J]. Crop Research, 2007, 21(Suppl. 1): 634-638. ] | |
[43] | 黄明, 吴金芝, 李友军, 等. 耕作力式和秸秆覆盖对旱地麦豆轮作小麦籽粒产量、蛋自质含量和土壤硝态氮残留的影响[J]. 草业学报, 2018, 27(9): 34-44. |
[ Huang Ming, Wu Jinzhi, Li Youjun, et al. Effects of tillage method and straw mulching on grain yield and protein content in wheat and soil nitrate residue under a winter wheat and summer soybean crop rotation in drylands[J]. Acta Prataculturae Sinica, 2018, 27(9): 34-44. ] | |
[44] |
纪龙, 申红芳, 徐春春, 等. 基于非线性主成分分析的绿色超级稻品种综合评价[J]. 作物学报, 2019, 45(7): 982-992.
doi: 10.3724/SP.J.1006.2019.82057 |
[ Ji Long, Shen Hongfang, Xu Chunchun, et al. Comprehensive evaluation of green super rice varieties based on nonlinear principal component analysis[J]. Acta Crops Sinica, 2019, 45(7): 982-992. ]
doi: 10.3724/SP.J.1006.2019.82057 |
|
[45] | 刘建新, 欧晓彬, 刘秀丽, 等. 过氧化氢缓解裸燕麦幼苗低温胁迫的主成分和隶属函数分析[J]. 植物研究, 2018, 38(5): 748-756. |
[ Liu Jianxin, Ou Xiaobin, Liu Xiuli, et al. Principal component and subordinate function of the alleviating effects of hydrogen peroxide (H2O2) on low-temperature stress in naked oat (Avena nuda) seedlings[J]. Bulletin of Botanical Research, 2018, 38(5): 748-756. ] |
[1] | 姚岚博, 冶建明, 王芸, 朱现伟. 干旱区人居环境系统耦合协调的时空演变及作用机制研究——以新疆为例[J]. 干旱区地理, 2023, 46(6): 1013-1023. |
[2] | 罗镕基, 王宏涛, 王成. 基于改进遥感生态指数的甘肃省古浪县生态质量评价[J]. 干旱区地理, 2023, 46(4): 539-549. |
[3] | 韩大勇, 牛忠泽, 伍永明, 高健. 水热条件共同驱动新疆湿地植物丰富度空间分布格局[J]. 干旱区地理, 2023, 46(1): 86-93. |
[4] | 琚立, 冉敏, 杨运鹏, 王馨. 塔里木盆地西南缘表土碳同位素组成特征分析[J]. 干旱区地理, 2022, 45(6): 1805-1813. |
[5] | 蒋桂容,覃建雄. 人与自然和谐共生新格局下评估干旱区林果业生产的生态功能价值——以新疆南疆地区为例[J]. 干旱区地理, 2022, 45(5): 1604-1614. |
[6] | 程静,王鹏,陈红翔,韩永贵. 半干旱区生态风险时空演变及其影响因素的地理探测——以宁夏盐池县为例[J]. 干旱区地理, 2022, 45(5): 1637-1648. |
[7] | 韩典辰,张方敏,陈吉泉,李云鹏,卢琦,卢燕宇. 内蒙古半干旱区蒸散估算和归因分析[J]. 干旱区地理, 2022, 45(4): 1071-1081. |
[8] | 郭小芹,李光明,孙占峰,王兴涛. 祁连山及周边降水分布聚类检验和典型流域增雨效果评价[J]. 干旱区地理, 2022, 45(3): 706-714. |
[9] | 李观凤,焦华富,王群. 干旱区文化旅游地社会-生态系统恢复力年际变化及影响因素——以甘肃省敦煌市为例[J]. 干旱区地理, 2022, 45(3): 935-945. |
[10] | 周春山,陈楷锐,白克拉木·孜克利亚. 基于科学知识图谱的干旱区城镇化文献计量分析[J]. 干旱区地理, 2022, 45(2): 578-592. |
[11] | 张伟,周亮,孙东琪,胡凤宁. 干旱区生态移民空间迁移特征与生态影响——以甘肃省古浪县为例[J]. 干旱区地理, 2022, 45(2): 618-627. |
[12] | 李金燕,郭娇,崔岚博,窦淼. 宁夏中南部调水工程受水区水资源配置效果评价[J]. 干旱区地理, 2021, 44(6): 1601-1611. |
[13] | 李琦,李发东,王国勤,乔云峰,Rashid KULMATOV,彭宇,Sayidjakhon KHASANOV,刘洪光,何新林,杨广. 乌兹别克斯坦灌溉农业发展及其对生态环境和经济发展的影响[J]. 干旱区地理, 2021, 44(6): 1810-1820. |
[14] | 刘夏,张曼,徐建华,郭英,段伟利,沈彦军. 基于系统动力学模型的塔里木河流域水资源承载力研究[J]. 干旱区地理, 2021, 44(5): 1407-1416. |
[15] | 蔺卿. 新疆水生态文明建设的水资源保护利用策略研究[J]. 干旱区地理, 2021, 44(5): 1483-1488. |
|