干旱区地理 ›› 2022, Vol. 45 ›› Issue (3): 912-924.doi: 10.12118/j.issn.1000-6060.2021.386
收稿日期:
2021-08-30
修回日期:
2021-09-26
出版日期:
2022-05-25
发布日期:
2022-05-31
通讯作者:
杨新军
作者简介:
叶文丽(1994-),女,博士研究生,主要从事社会-生态系统恢复力与可持续发展研究. E-mail: 基金资助:
YE Wenli(),YANG Xinjun(),WU Kongsen,WANG Yin
Received:
2021-08-30
Revised:
2021-09-26
Online:
2022-05-25
Published:
2022-05-31
Contact:
Xinjun YANG
摘要:
社会-生态系统恢复力理论为可持续发展研究提供了新视角。从社会、经济、生态三大子系统,脆弱性和适应能力两大要素着手,建立社会-生态系统恢复力评价指标体系,采用集对分析法测度黄土高原2000—2018年各子系统及社会-生态系统恢复力,利用探索性空间数据分析法进行时空演变格局分析,并甄别社会-生态系统恢复力的主要影响因素。结果表明:(1) 2000—2018年社会-生态系统恢复力由0.522增强至0.721。社会恢复力由0.548增强至0.629后减弱至0.525;经济恢复力由0.401持续增强至0.850;生态恢复力由0.725减弱至0.607后增强至0.734,子系统恢复力演化趋势均不协同,经济系统与社会-生态系统恢复力演化趋势协同。经济系统恢复力的增强对于社会-生态系统恢复力增强具有显著促进作用。(2) 社会-生态系统恢复力出现显著空间集聚趋势,较高地区除省会城市和包头等能源富集区外,关中平原地区始终呈现高-高(H-H)集聚格局,其余地区恢复力普遍相对偏低。(3) 2000年以来黄土高原地区社会-生态系统恢复力生态维度障碍度始终高于社会和经济维度,不同地区指标层首要影响因素为人均GDP。
叶文丽,杨新军,吴孔森,王银. 黄土高原社会-生态系统恢复力时空变化特征与影响因素分析[J]. 干旱区地理, 2022, 45(3): 912-924.
YE Wenli,YANG Xinjun,WU Kongsen,WANG Yin. Spatio-temporal characteristics and influencing factors of social-ecological system resilience in the Loess Plateau[J]. Arid Land Geography, 2022, 45(3): 912-924.
表1
黄土高原社会-生态系统恢复力评价指标体系"
维度层(权重) | 要素层 | 指标层 | 指标解释(方向) | AHP权重 | 均方差权重 | 最终权重 |
---|---|---|---|---|---|---|
社会系统 (0.333) | 脆弱性 | 人口密度(X1)/人·km-2 | 衡量系统压力状态(-) | 0.037 | 0.065 | 0.051 |
人均固定资产投资(X2)/104元 | 衡量社会资本投资额度(+) | 0.083 | 0.035 | 0.059 | ||
财政支出(X3)/104元 | 衡量社会财政支出力度(+) | 0.091 | 0.037 | 0.064 | ||
适应能力 | 社会消费品总额(X4)/104元 | 衡量系统消费能力(+) | 0.058 | 0.026 | 0.042 | |
普通中学在校学生数占人口比重(X5)/% | 衡量社会教育程度(+) | 0.029 | 0.036 | 0.032 | ||
每万人医疗机构床位数(X6)/个 | 衡量医疗卫生水平(+) | 0.060 | 0.022 | 0.041 | ||
脆弱性 | 金融机构贷款(X7)/104元 | 衡量地方经济水平(-) | 0.014 | 0.029 | 0.021 | |
经济系统 (0.333) | 产业结构多样化指数(X8) | 衡量产业结构平衡程度(+) | 0.090 | 0.137 | 0.114 | |
规模以上工业企业产值(X9)/104元 | 衡量地方工业水平(+) | 0.058 | 0.054 | 0.056 | ||
适应能力 | 财政收入(X10)/104元 | 衡量地方政府经济水平(+) | 0.016 | 0.031 | 0.024 | |
金融机构存款余额(X11)/104元 | 衡量人口收入水平(+) | 0.015 | 0.027 | 0.021 | ||
人均GDP(X12)/元 | 衡量人均经济水平(+) | 0.139 | 0.020 | 0.079 | ||
生态系统 (0.333) | 脆弱性 | 化肥使用强度(X13)/t·hm-2 | 衡量对环境的污染程度(-) | 0.017 | 0.031 | 0.024 |
地形破碎度(X14) | 衡量地形破碎程度(-) | 0.061 | 0.100 | 0.081 | ||
降水量(X15)/mm | 衡量自然条件(+) | 0.129 | 0.089 | 0.109 | ||
适应能力 | NDVI(X16) | 衡量系统自然条件(+) | 0.062 | 0.121 | 0.091 | |
造林面积(X17)/hm2 | 衡量系统自然条件(+) | 0.012 | 0.049 | 0.030 | ||
土地利用强度(X18) | 衡量系统适应能力(+) | 0.027 | 0.064 | 0.046 |
表3
2000—2018年社会-生态系统恢复力各维度障碍度"
省份 | 社会维度 | 经济维度 | 生态维度 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2000年 | 2010年 | 2018年 | 2000年 | 2010年 | 2018年 | 2000年 | 2010年 | 2018年 | |||
青海 | 29.62 | 31.52 | 31.74 | 35.45 | 32.99 | 29.12 | 34.93 | 35.49 | 39.13 | ||
甘肃 | 34.12 | 34.38 | 33.47 | 29.03 | 30.49 | 32.46 | 36.85 | 35.13 | 34.07 | ||
宁夏 | 32.43 | 32.61 | 31.32 | 27.97 | 29.51 | 30.12 | 39.60 | 37.88 | 38.56 | ||
内蒙古 | 31.72 | 32.69 | 32.48 | 32.01 | 30.99 | 29.97 | 36.26 | 36.32 | 37.56 | ||
陕西 | 34.98 | 35.64 | 34.97 | 30.74 | 32.91 | 32.35 | 34.28 | 31.45 | 32.69 | ||
山西 | 34.47 | 33.86 | 33.75 | 30.30 | 32.55 | 33.06 | 34.23 | 33.14 | 33.46 | ||
河南 | 34.92 | 35.67 | 34.96 | 34.92 | 35.97 | 33.59 | 30.16 | 28.36 | 31.45 |
表4
2000—2018年社会-生态系统恢复力指标层障碍度"
年份 | 青海 | 甘肃 | 宁夏 | 内蒙古 | 陕西 | 山西 | 河南 |
---|---|---|---|---|---|---|---|
2000 | X8(14.10) | X12(12.71) | X15(13.10) | X15(13.05) | X12(13.01) | X12(12.71) | X12(13.17) |
X12(10.79) | X3(10.30) | X12(11.93) | X12(11.53) | X3(10.53) | X3(10.20) | X3(10.67) | |
X15(9.58) | X15(10.29) | X16(10.23) | X3(9.33) | X2(9.71) | X15(9.73) | X2(9.84) | |
X3(8.74) | X2(9.47) | X3(9.66) | X16(9.16) | X15(9.58) | X2(9.64) | X8(9.25) | |
X2(8.03) | X9(8.94) | X2(8.78) | X8(8.61) | X9(9.13) | X16(9.17) | X9(9.12) | |
2010 | X12(11.79) | X12(12.98) | X15(12.57) | X15(12.42) | X12(13.12) | X14(14.87) | X12(13.57) |
X8(9.81) | X3(10.32) | X12(12.16) | X12(12.25) | X3(10.63) | X12(12.78) | X3(10.60) | |
X3(9.30) | X15(9.99) | X3(9.64) | X3(9.49) | X2(9.82) | X3(9.96) | X8(10.27) | |
X15(9.16) | X2(9.58) | X2(8.89) | X16(8.71) | X9(8.95) | X15(9.73) | X2(9.67) | |
X2(8.71) | X9(8.98) | X16(8.34) | X2(8.58) | X15(7.96) | X2(9.42) | X9(7.77) | |
2018 | X15(12.43) | X12(13.00) | X15(13.54) | X15(13.58) | X12(13.55) | X14(13.64) | X12(14.22) |
X12(12.21) | X15(10.63) | X12(12.11) | X12(12.64) | X3(10.31) | X12(12.91) | X3(10.42) | |
X3(9.39) | X3(9.79) | X3(9.01) | X3(9.16) | X15(9.47) | X15(10.28) | X8(8.76) | |
X9(8.38) | X2(9.17) | X2(8.45) | X2(8.56) | X2(9.43) | X3(9.77) | X2(8.10) | |
X2(8.14) | X9(8.56) | X9(8.20) | X9(8.02) | X9(9.02) | X2(9.45) | X4(7.25) |
[1] | 孙晶, 王俊, 杨新军. 社会-生态系统恢复力研究综述[J]. 生态学报, 2007, 27(12): 5371-5381. |
[ Sun Jing, Wang Jun, Yang Xinjun. An overview on the resilience of social-ecological systems[J]. Acta Ecologica Sinica, 2007, 27(12): 5371-5381. ] | |
[2] |
Folke C, Carpenter S, Elmqvist T, et al. Resilience and sustainable development: Building adaptive capacity in a world of transformations[J]. Ambio: A Journal of the Human Environment, 2002, 31(5): 437-440.
doi: 10.1579/0044-7447-31.5.437 pmid: 12374053 |
[3] | 黄晓军, 王博, 刘萌萌, 等. 社会-生态系统恢复力研究进展-基于CiteSpace的文献计量分析[J]. 生态学报, 2019, 39(8): 3007-3017. |
[ Huang Xiaojun, Wang Bo, Liu Mengmeng, et al. Research progress on the resilience of socio-ecosystem: A bibliometric analysis based on CiteSpace[J]. Acta Ecologica Sinica, 2019, 39(8): 3007-3017. ] | |
[4] |
Jessica C, Michael C, Georgina C, et al. Understanding the context of multifaceted collaborations for social-ecological sustainability: A methodology for cross-case analysis[J]. Ecology and Society, 2020, 25(3): 7, doi: 10.5751/ES-11527-250307
doi: 10.5751/ES-11527-250307 |
[5] |
Ostrom E. A general framework for analyzing sustainability of social-ecological systems[J]. Science, 2009, 325(5939): 419-421.
doi: 10.1126/science.1172133 |
[6] |
Olsson P, Galaz V, Boonstra W J. Sustainability transformations: A resilience perspective[J]. Ecology and Society, 2014, 19(4): 1, doi: 10.5751/ES-06799-190401.
doi: 10.5751/ES-06799-190401 |
[7] |
Holling C S. Resilence and stability of ecological aystems[J]. Annual Review of Ecology and Systematics, 1973, 4(1): 1-23.
doi: 10.1146/annurev.es.04.110173.000245 |
[8] |
Holling C S. Understanding the complexity of economic, ecological, and social systems[J]. Ecosystems, 2001, 4(5): 390-405.
doi: 10.1007/s10021-001-0101-5 |
[9] | Alliance R. Assessing and managing resilience in social-ecological systems: A practitioners workbook[DB/OL]. [2007-06-01]. http://www.resalliance.org/3871.php. |
[10] | Folke C, Carpenter S, Elmqvist T, et al. Resilience and sustainable development: Building adaptive capacity in a world of transformations[J]. Royal Swedish Academy of Sciences, 2002, 31(5): 437-440. |
[11] |
Walker B, Holling C S, Carpenter S. Resilience, adaptability and transformability in social-ecology systems[J]. Ecology and Society, 2004, 9(2): 5, doi: 10.1890/04-0463.
doi: 10.1890/04-0463 |
[12] |
Adger W N, Hughes T P, Folke C, et al. Social-ecological resilience to coastal disasters[J]. Science, 2005, 309(5737): 1036-1039.
pmid: 16099974 |
[13] | Cumming G S, Barnes G, Perz S, et al. An exploratory framework for the empirical measurement of resilience[J]. Ecosystems, 2005(8): 975-987. |
[14] |
Michael G L, Deborah P, Robert W D. Towards a social-ecological resilience framework for coastal planning[J]. Land Use Policy, 2013, 30(1): 925-933.
doi: 10.1016/j.landusepol.2012.06.012 |
[15] |
Tilt B, Gerkey D. Dams and population displacement on China’s Upper Mekong River: Implications for social capital and social-ecological resilience[J]. Global Environmental Change, 2016, 36: 153-162.
doi: 10.1016/j.gloenvcha.2015.11.008 |
[16] |
Bennett E M, Cumming G S, Peterson G D. A systems model approach to determining resilience surrogates for case studies[J]. Ecosystems, 2005, 8: 945-957.
doi: 10.1007/s10021-005-0141-3 |
[17] |
Perz S G, Munoz-Carpena R, Kiker G, et al. Evaluating ecological resilience with global sensitivity and uncertainty analysis[J]. Ecological Modelling, 2013, 263: 174-186.
doi: 10.1016/j.ecolmodel.2013.04.024 |
[18] |
Gulay C C. Assessment of the resilience of socio-ecological production landscapes and seascapes: A case study from Lefke Region of north Cyprus[J]. Ecological Indicators, 2017, 73: 128-138.
doi: 10.1016/j.ecolind.2016.09.036 |
[19] |
Chaiteera P, Budsara L. Indicators for assessing social-ecological resilience: A case study of organic rice production in northern Thailand[J]. Kasetsart Journal of Social Sciences, 2018, 39(3): 414-421.
doi: 10.1016/j.kjss.2017.07.003 |
[20] | 周晓芳. 社会-生态系统恢复力的测量方法综述[J]. 生态学报, 2017, 37(12): 4278-4288. |
[ Zhou Xiaofang. Measuring methods for the resilience of social ecological systems[J]. Acta Ecologica Sinica, 2017, 37(12): 4278-4288. ] | |
[21] | 刘小茜, 裴韬, 舒华, 等. 基于文献计量学的社会-生态系统恢复力研究进展[J]. 地球科学进展, 2019, 34(7): 765-777. |
[ Liu Xiaoqian, Pei Tao, Shu Hua, et al. A bibliometric investigation of research on social-ecological system resilience[J]. Advances in Earth Science, 2019, 34(7): 765-777. ] | |
[22] | 汪兴玉, 王俊, 白红英, 等. 基于农户尺度的社会-生态系统对干旱的恢复力研究-以甘肃省榆中县为例[J]. 水土保持通报, 2008, 28(1): 14-18. |
[ Wang Xingyu, Wang Jun, Bai Hongying, et al. Social ecosystem based on peasant household versus drought resilience: A case study in Yuzhong County of Gansu Province[J]. Bulletin of Soil and Water Conservation, 2008, 28(1): 14-18. ] | |
[23] |
张行, 梁小英, 刘迪, 等. 生态脆弱区社会-生态景观恢复力时空演变及情景模拟[J]. 地理学报, 2019, 74(7): 1450-1466.
doi: 10.11821/dlxb201907013 |
[ Zhang Hang, Liang Xiaoying, Liu Di, et al. The resilience evolution and scenario simulation of social-ecological landscape in the fragile area[J]. Acta Geographica Sinica, 2019, 74(7): 1450-1466. ]
doi: 10.11821/dlxb201907013 |
|
[24] |
王群, 陆林, 杨兴柱. 千岛湖社会-生态系统恢复力测度与影响机理[J]. 地理学报, 2015, 70(5): 779-795.
doi: 10.11821/dlxb201505009 |
[ Wang Qun, Lu Lin, Yang Xingzhu. Study on measurement and impact mechanism of socio-ecological system resilience in Qiandao Lake[J]. Acta Geographica Sinica, 2015, 70(5): 779-795. ]
doi: 10.11821/dlxb201505009 |
|
[25] | 陈亚慧. 神农架林区社会-生态系统恢复力测度与影响机理[D]. 武汉: 华中师范大学, 2018. |
[ Chen Yahui. Study on measurement and impact mechanism of socio-ecological system resilience in Shennongjia Forest District[D]. Wuhan: Central China Normal University, 2018. ] | |
[26] | 侯彩霞, 周立华, 文岩, 等. 生态政策下草原社会-生态系统恢复力评价--以宁夏盐池县为例[J]. 中国人口·资源与环境, 2018, 28(8): 117-126. |
[ Hou Caixia, Zhou Lihua, Wen Yan, et al. Evaluation of social-ecological systems resilience in ecological policy[J]. China Population, Resources and Environment, 2018, 28(8): 117-126. ] | |
[27] |
孙锐, 陈少辉, 苏红波. 黄土高原不同生态类型NDVI时空变化及其对气候变化响应[J]. 地理研究, 2020, 39(5): 1200-1214.
doi: 10.11821/dlyj020190399 |
[ Sun Rui, Chen Shaohui, Su Hongbo. Spatiotemporal variation of NDVI in different ecotypes on the Loess Plateau and its response to climate change[J]. Geographical Research, 2020, 39(5): 1200-1214. ]
doi: 10.11821/dlyj020190399 |
|
[28] |
党小虎, 吴彦斌, 刘国彬, 等. 生态建设15年黄土高原生态足迹时空变化[J]. 地理研究, 2018, 37(4): 761-771.
doi: 10.11821/dlyj201804010 |
[ Dang Xiaohu, Wu Yanbin, Liu Guobin, et al. Spatial-temporal changes of ecological footprint in the Loess Plateau after ecological construction between 1995 and 2010[J]. Geographical Research, 2018, 37(4): 761-771. ]
doi: 10.11821/dlyj201804010 |
|
[29] | 吴景全, 吴铭婉, 臧传富. 西北诸河流域土地利用变化及土地生态安全评估[J]. 干旱区地理, 2021, 44(5): 1471-1482. |
[ Wu Jingquan, Wu Mingwan, Zang Chuanfu. Land use change and land ecological security assessment in the river basins of northwestern China[J]. Arid Land Geography, 2021, 44(5): 1471-1482. ] | |
[30] |
Folke C, Hahn T, Olsson P, et al. Adaptive governance of social-ecological systems[J]. Annual Review of Environment and Resources, 2005, 30: 441-473.
doi: 10.1146/annurev.energy.30.050504.144511 |
[31] |
Pimm S L. The complexity and stability of ecosystems[J]. Nature, 1984, 307: 321-326.
doi: 10.1038/307321a0 |
[32] | 余光中, 李波, 张新时. 社会生态系统及脆弱性驱动机制分析[J]. 生态学报, 2014, 34(7): 1870-1879. |
[ Yu Guangzhong, Li Bo, Zhang Xinshi. Social ecological system and vulnerability driving mechanism analysis[J]. Acta Ecologica Sinica, 2014, 34(7): 1870-1879. ] | |
[33] |
Carpenter S R, Westley F, Turner M G. Surrogates for resilience of social-ecological systems[J]. Ecosystems, 2005, 8(8): 941-944.
doi: 10.1007/s10021-005-0170-y |
[34] | 孙东琪, 朱传耿, 周婷. 苏、鲁产业结构比较分析[J]. 经济地理, 2010, 30(11): 1847-1853. |
[ Sun Dongqi, Zhu Chuangeng, Zhou Ting. Comparative study on the industrial structure of Jiangsu Province and Shandong Province[J]. Economic Geography, 2010, 30(11): 1847-1853. ] | |
[35] | 柳冬青, 张金倩, 巩杰, 等. 陇中黄土丘陵区土地利用强度-生态系统服务-人类类福祉时空关系研究--以安定区为例[J]. 生态学报, 2019, 39(2): 637-648. |
[ Liu Dongqing, Zhang Jinqian, Gong Jie, et al. Spatial and temporal relations among land-use intensity, ecosystem services, and human well-being in the Longzhong loess hilly region: A case study of the Anding District, Gansu Province[J]. Acta Ecologica Sinica, 2019, 39(2): 637-648. ] | |
[36] |
吴秀芹, 张艺潇, 吴斌, 等. 沙区聚落模式及人居环境质量评价研究--以宁夏盐池县北部风沙区为例[J]. 地理研究, 2010, 29(9): 1683-1694.
doi: 10.11821/yj2010090014 |
[ Wu Xiuqin, Zhang Yixiao, Wu Bin, et al. Study on the settlement pattern in sandy area and its quality evaluation: A case study of sandy area in the north of Yanchi County[J]. Geographical Research, 2010, 29(9): 1683-1694. ]
doi: 10.11821/yj2010090014 |
|
[37] | 赵克勤. 集对分析及其初步应用[M]. 杭州: 浙江科学技术出版社, 2003: 1-32. |
[ Zhao Keqin. Set pair analysis and its preliminary application[M]. Hangzhou: Zhejiang Science and Technology Publishing House, 2003: 1-32. ] | |
[38] | 李博, 苏飞, 杨智, 等. 基于脆弱性视角的环渤海地区人海关系地域系统时空特征及演化分析[J]. 生态学报, 2018, 38(4): 1436-1445. |
[ Li Bo, Su Fei, Yang Zhi, et al. Vulnerability-based analysis of the spatial-temporal dynamic patterns of the human-sea territorial system of the Bohai-rim region, China[J]. Acta Ecologica Sinica, 2018, 38(4): 1436-1445. ] | |
[39] |
李博, 杨智, 苏飞. 基于集对分析的大连市人海经济系统脆弱性测度[J]. 地理研究, 2015, 34(5): 967-976.
doi: 10.11821/dlyj201505015 |
[ Li Bo, Yang Zhi, Su Fei. Measurement of vulnerability in human-sea economic system based on set pair analysis: A case study of Dalian City[J]. Geographical Research, 2015, 34(5): 967-976. ]
doi: 10.11821/dlyj201505015 |
|
[40] |
李博, 杨智, 苏飞, 等. 基于集对分析的中国海洋经济系统脆弱性研究[J]. 地理科学, 2016, 36(1): 47-54.
doi: 10.13249/j.cnki.sgs.2016.01.006 |
[ Li Bo, Yang Zhi, Su Fei, et al. Vulnerability measurement of chinese marine economic system based on set pair analysis[J]. Scientia Geographica Sinica, 2016, 36(1): 47-54. ]
doi: 10.13249/j.cnki.sgs.2016.01.006 |
|
[41] | 孟宪萌, 胡和平. 基于熵权的集对分析模型在水质综合评价中的应用[J]. 水利学报, 2009, 40(3): 257-262. |
[ Meng Xianmeng, Hu Heping. Application of set pair analysis model based on entropy weight to comprehensive evaluation of water quality[J]. Journal of Hydraulic Engineering, 2009, 40(3): 257-262. ] | |
[42] |
杨振, 丁启燕, 王念, 等. 中国人口健康脆弱性地区差异与影响因素分析[J]. 地理科学, 2018, 38(1): 135-142.
doi: 10.13249/j.cnki.sgs.2018.01.015 |
[ Yang Zhen, Ding Qiyan, Wang Nian, et al. Distribution characteristics of health vulnerability and its influence factors in China[J]. Scientia Geographica Sinica, 2018, 38(1): 135-142. ]
doi: 10.13249/j.cnki.sgs.2018.01.015 |
|
[43] | 苏飞, 张平宇. 基于集对分析的大庆市经济系统脆弱性评价[J]. 地理学报, 2010, 65(4): 454-464. |
[ Su Fei, Zhang Pingyu. Vulnerability assessment of petroleum city’s economic system based on set pair analysis: A case study of Daqing City[J]. Acta Geographica Sinica, 2010, 65(4): 454-464. ] | |
[44] | 黄越, 程静, 王鹏. 中国北方农牧交错区生态脆弱性时空演变格局与驱动因素--以盐池县为例[J]. 干旱区地理, 2021, 44(4): 1175-1185. |
[ Huang Yue, Cheng Jing, Wang Peng. Spatiotemporal evolution pattern and driving factors of ecological vulnerabilityin agro-pastoral region in northern China: A case of Yanchi County in Ningxia[J]. Arid Land Geography, 2021, 44(4): 1175-1185. ] | |
[45] |
周国华, 刘畅, 唐承丽, 等. 湖南乡村生活质量的空间格局及其影响因素[J]. 地理研究, 2018, 37(12): 2475-2489.
doi: 10.11821/dlyj201812009 |
[ Zhou Guohua, Liu Chang, Tang Chengli, et al. Spatial pattern and influencing factors of quality of life in rural areas of Hunan Province[J]. Geographical Research, 2018, 37(12): 2475-2489. ]
doi: 10.11821/dlyj201812009 |
|
[46] | 孙才志, 董璐, 郑德凤. 中国农村水贫困风险评价、障碍因子及阻力类型分析[J]. 资源科学, 2014, 36(5): 895-905. |
[ Sun Caizhi, Dong Lu, Zheng Defeng. Rural water poverty risk evaluation, obstacle indicators and resistance paradigms in China[J]. Resources Science, 2014, 36(5): 895-905. ] | |
[47] | 杨永春, 穆焱杰, 张薇. 黄河流域高质量发展的基本条件与核心策略[J]. 资源科学, 2020, 42(3): 409-423. |
[ Yang Yongchun, Mu Yanjie, Zhang Wei. Basic conditions and core strategies of high-quality development in the Yellow River Basin[J]. Resources Science, 2020, 42(3): 409-423. ] |
[1] | 张宁,汪子晨,杨肖,陈彤,邢飞. 新疆水资源与农业种植系统耦合协调及时空差异研究——以粮食和棉花种植系统为例[J]. 干旱区地理, 2023, 46(3): 349-359. |
[2] | 任涛涛,李双双,段克勤,何锦屏. 黄土高原热浪型和缺水型骤旱时空变化特征及其影响因素[J]. 干旱区地理, 2023, 46(3): 360-370. |
[3] | 安彬,肖薇薇,刘宇峰,刘全玉. 1955—2021年黄土高原地区相对湿度时空演变规律[J]. 干旱区地理, 2023, 46(12): 1939-1950. |
[4] | 卓静,胡皓,何慧娟,王智,杨承睿. 陕北黄土高原生态脆弱性时空变异及驱动因素分析[J]. 干旱区地理, 2023, 46(11): 1768-1777. |
[5] | 钱伟, 王春, 代文, 卢旺达, 李敏, 陶宇, 李梦琪. 基于深度学习融合OBIA的黄土高原小流域淤地坝系提取[J]. 干旱区地理, 2023, 46(11): 1803-1812. |
[6] | 沙国良,魏天兴,陈宇轩,傅彦超,任康. 黄土高原丘陵区典型植物群落土壤粒径分布特征[J]. 干旱区地理, 2022, 45(4): 1224-1234. |
[7] | 李观凤,焦华富,王群. 干旱区文化旅游地社会-生态系统恢复力年际变化及影响因素——以甘肃省敦煌市为例[J]. 干旱区地理, 2022, 45(3): 935-945. |
[8] | 吉珍霞,侯青青,裴婷婷,陈英,谢保鹏,吴华武. 黄土高原植被物候对季节性干旱的敏感性响应[J]. 干旱区地理, 2022, 45(2): 557-565. |
[9] | 孙健武,高军波,马志飞,喻超,张欣怡. 不同地理环境下“空间贫困陷阱”分异机制比较——基于大别山与黄土高原的实证[J]. 干旱区地理, 2022, 45(2): 650-659. |
[10] | 田达睿,唐皓,谭静斌. 陕北黄土高原丘陵沟壑区聚落适宜空间模式研究——以米脂县东沟为例[J]. 干旱区地理, 2022, 45(1): 263-276. |
[11] | 牛燕宁,綦琳,乔彦松. 基于碎屑锆石年代学对黄土高原物源及其时空差异的理解与展望[J]. 干旱区地理, 2021, 44(6): 1623-1634. |
[12] | 姜丽,魏天兴,李亦然,魏安琪. 地形因子对陕北黄土丘陵区防护林树种分布的影响[J]. 干旱区地理, 2021, 44(6): 1763-1771. |
[13] | 付爱红,程勇,李卫红,朱成刚,陈亚鹏. 塔里木河下游生态输水对荒漠河岸林生态恢复力的影响[J]. 干旱区地理, 2021, 44(3): 620-628. |
[14] | 安彬,肖薇薇,张淑兰,朱妮,张建东. 1960—2017年黄土高原地表温度时空变化特征[J]. 干旱区地理, 2021, 44(3): 778-785. |
[15] | 王钧,李广,聂志刚,董莉霞,闫丽娟. 陇中黄土高原区旱地春小麦产量对干旱胁迫响应的模拟研究[J]. 干旱区地理, 2021, 44(2): 494-506. |
|