干旱区地理 ›› 2021, Vol. 44 ›› Issue (6): 1623-1634.doi: 10.12118/j.issn.1000–6060.2021.06.11
收稿日期:
2021-06-09
修回日期:
2021-08-14
出版日期:
2021-11-25
发布日期:
2021-12-03
通讯作者:
乔彦松
作者简介:
牛燕宁(1982-),女,博士研究生,主要从事第四纪气候与环境变化等方面的研究. E-mail: 基金资助:
NIU Yanning1,2(),QI Lin3,4,QIAO Yansong3,4()
Received:
2021-06-09
Revised:
2021-08-14
Online:
2021-11-25
Published:
2021-12-03
Contact:
Yansong QIAO
摘要:
中国黄土高原保存着全世界分布范围最广、厚度最大、连续性最好的风尘堆积,是第四纪非常有价值的陆相古气候古环境地质档案。半个多世纪以来,学界对风尘沉积的气候记录和黄土高原的成因进行了大量研究。然而,对黄土粉尘的确切来源以及物源历史是否存在时空变迁等问题尚存在广泛争议。通过对现有锆石年龄谱数据的统计分析,着重从黄土与周缘沙漠的亲缘关系、轨道年龄尺度和构造年龄尺度的角度着手,获得以下认识:(1) 在获得北方干旱区沙漠确切年代学信息的基础上,应用碎屑锆石U-Pb年龄谱法有望实现厘清黄土与风成沙之间物源亲疏关系的远景目标。(2) 现有数据识别出L1黄土的物源可能存在空间差异。(3) 支持冰期-间冰期的黄土物源未发生重大改变的观点。(4) 在构造时间尺度上,不同地区年龄谱表现出可能发生物源转移的时段明显重叠。(5) 有限的红黏土年龄谱数据显示物源的空间差异很可能在第四纪之前就已存在。鉴于目前的数据量还较少,有必要深入开展工作。应用该方法,可以在连续的长时间尺度下对黄土物源变化历史开展研究,并为将来在黄土高原开展多地区多剖面物源对比工作积累数据集。
牛燕宁,綦琳,乔彦松. 基于碎屑锆石年代学对黄土高原物源及其时空差异的理解与展望[J]. 干旱区地理, 2021, 44(6): 1623-1634.
NIU Yanning,QI Lin,QIAO Yansong. Understanding and prospects of provenance and time-spatial differences in the Loess Plateau based on detrital zircon chronology[J]. Arid Land Geography, 2021, 44(6): 1623-1634.
[1] |
An Z S, Kukla G J, Porter S C, et al. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130000 years[J]. Quaternary Research, 1991, 36(1):29-36.
doi: 10.1016/0033-5894(91)90015-W |
[2] |
An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times[J]. Nature, 2001, 411(6833):62-66.
doi: 10.1038/35075035 |
[3] |
Ding Z L, Yu Z Y, Rutter N W, et al. Towards an orbital time scale for Chinese loess deposits[J]. Quaternary Science Reviews, 1994, 13(1):39-70.
doi: 10.1016/0277-3791(94)90124-4 |
[4] |
Ding Z L, Rutter N W, Sun J M, et al. Re-arrangement of atmospheric circulation at about 2.6 Ma over northern China: Evidence from grain size records of loess-palaeosol and red clay sequences[J]. Quaternary Science Reviews, 2000, 19(6):547-558.
doi: 10.1016/S0277-3791(99)00017-7 |
[5] |
Lu H Y, Sun D H. Pathways of dust input to the Chinese Loess Plateau during the last glacial and interglacial periods[J]. Catena, 2000, 40(3):251-261.
doi: 10.1016/S0341-8162(00)00090-4 |
[6] | 刘东生. 黄土与环境[M]. 北京: 海洋出版社, 1985: 31-48. |
[ Liu Dongsheng. Loess and the environment[M]. Beijing: China Ocean Press, 1985: 31-48. ] | |
[7] |
An Z S, Liu D T, Lu H Y, et al. The long-term paleomonsoon variation recorded by the loess-paleosol sequence in central China[J]. Quaternary International, 1990, 7-8:91-95.
doi: 10.1016/1040-6182(90)90042-3 |
[8] | 郭正堂, 彭淑贞, 郝青振, 等. 晚第三纪中国西北干旱化的发展及其与北极冰盖形成演化和青藏高原隆升的关系[J]. 第四纪研究, 1999, 19(6):556-567. |
[ Guo Zhengtang, Peng Shuzhen, Hao Qingzhen, et al. Late Tertiary development of aridification in northwestern China: Link with the Arctic ice-sheet formation and Tibetan uplifts[J]. Quaternary Sciences, 1999, 19(6):556-567. ] | |
[9] | 安芷生, 孙东怀, 陈明扬, 等. 黄土高原红粘土序列与晚第三纪的气候事件[J]. 第四纪研究, 2000, 20(5):435-446. |
[ An Zhisheng, Sun Donghuai, Chen Mingyang, et al. Red clay sequences in Chinese Loess Plateau and recorded paleoclimate events of the Late Tertiary[J]. Quaternary Sciences, 2000, 20(5):435-446. ] | |
[10] |
Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature, 2002, 416(6877):159-163.
doi: 10.1038/416159a |
[11] |
Ding Z L, Derbyshire E, Yang S L, et al. Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implications for monsoon evolution[J]. Earth and Planetary Science Letters, 2005, 237(1-2):45-55.
doi: 10.1016/j.epsl.2005.06.036 |
[12] |
Rea D K, Snoeckx H, Joseph L H. Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere[J]. Paleoceanography, 1998, 13(3):215-224.
doi: 10.1029/98PA00123 |
[13] |
Pettke T, Halliday A N, Rea D K. Cenozoic evolution of Asian climate and sources of Pacific seawater Pb and Nd derived from eolian dust of sediment core LL44-GPC3[J]. Paleoceanography and Paleoclimatology, 2002, 17(3):1031, doi: 10.1029/2001PA000673.
doi: 10.1029/2001PA000673 |
[14] |
Gehrels G, Kapp P, DeCelles P, et al. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen[J]. Tectonics, 2011, 30(5): TC5016, doi: 10.1029/2011tc002868.
doi: 10.1029/2011tc002868 |
[15] |
Sun D H, Bloemendal J, Rea D K, et al. Grain size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components[J]. Sedimentary Geology, 2002, 152(3-4):263-277.
doi: 10.1016/S0037-0738(02)00082-9 |
[16] |
Li G J, Chen J, Chen Y, et al. Dolomite as a tracer for the source regions of Asian dust[J]. Journal of Geophysical Research, 2007, 112(D17):D17201, doi: 10.1029/2007jd008676.
doi: 10.1029/2007jd008676 |
[17] |
Meng X, Liu L, Zhao W, et al. Distant Taklimakan Desert as an important source of aeoliandeposits on the Chinese Loess Plateau as evidenced by carbonate minerals[J]. Geophysical Research Letters, 2019, 46(9):4854-4862.
doi: 10.1029/2018GL081551 |
[18] |
Jeong G Y, Lee K S. A mineral tracer toward high-resolution dust provenance on the Chinese Loess Plateau: SEM, TEM, and sulfur isotopes of sulfate inclusions in biotite[J]. American Mineralogis, 2010, 95(1):64-72.
doi: 10.2138/am.2010.3234 |
[19] |
Lü T Y, Sun J M. Luminescence sensitivities of quartz grains from eolian deposits in northern China and their implications for provenance[J]. Quaternary Research, 2011, 76(2):181-189.
doi: 10.1016/j.yqres.2011.06.015 |
[20] | Lü T Y, Sun J M, Feathers J K, et al. Spatiotemporal variations and implications of luminescence sensitivity of quartz grains on the Chinese Loess Plateau since the last interglaciation[J]. Quaternary Research, 2020, 99:10-14. |
[21] |
Sun J M. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 2002, 203(3-4):845-859.
doi: 10.1016/S0012-821X(02)00921-4 |
[22] |
Liu C Q, Masuda A, Okada A, et al. Isotope geochemistry of Quaternary deposits from the arid lands in northern China[J]. Earth and Planetary Science Letters, 1994, 127(1-4):25-38.
doi: 10.1016/0012-821X(94)90195-3 |
[23] |
Rao W B, Yang J D, Chen J, et al. Sr-Nd isotope geochemistry of eolian dust of the arid-semiarid areas in China: Implications for loess provenance and monsoon evolution[J]. Science Bulletin, 2006, 51(12):1401-1412.
doi: 10.1007/s11434-006-2008-1 |
[24] |
Chen J, Li G J, Yang J D, et al. Nd and Sr isotopic characteristics of Chinese deserts: Implications for the provenances of Asian dust[J]. Geochimica et Cosmochimica Acta, 2007, 71(15):3904-3914.
doi: 10.1016/j.gca.2007.04.033 |
[25] |
Ferrat M, Weiss D J, Strekopytov S, et al. Improved provenance tracing of Asian dust sources using rare earth elements and selected trace elements for palaeomonsoon studies on the eastern Tibetan Plateau[J]. Geochimica et Cosmochimica Acta, 2011, 75(21):6374-6399.
doi: 10.1016/j.gca.2011.08.025 |
[26] |
Shi Z G, Liu X D. Distinguishing the provenance of fine-grained eolian dust over the Chinese Loess Plateau from a modelling perspective[J]. Tellus B, 2011, 63(5):959-970.
doi: 10.1111/j.1600-0889.2011.00561.x |
[27] |
Zhang X Y, Gong S L, Zhao T L, et al. Sources of Asian dust and role of climate change versus desertification Asian dust emission[J]. Geophysical Research Letters, 2003, 30(24): doi: 10.1029/2003GL018206.
doi: 10.1029/2003GL018206 |
[28] | 张小曳. 有关中国黄土高原黄土物质的源区及其输送方式的再评述[J]. 第四纪研究, 2007, 27(2):181-186. |
[ Zhang Xiaoye. Review on sources and transport of loess materials on the Chinese Loess Plateau[J]. Quaternary Sciences, 2007, 27(2):181-186. ] | |
[29] |
Li Y R, Shi W H, Aydin A, et al. Loess genesis and worldwide distribution[J]. Earth-Science Reviews, 2019, 201:102947, doi: 10.10 16/j.earscirev.2019.102947.
doi: 10.10 16/j.earscirev.2019.102947 |
[30] |
Wang F, Sun D H, Chen F H, et al. Formation and evolution of the Badain Jaran Desert, north China, as revealed by a drill core from the desert centre and by geological survey[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 426:139-158.
doi: 10.1016/j.palaeo.2015.03.011 |
[31] |
Fan Y X, Mou X S, Wang Y D, et al. Quaternary paleoenvironmental evolution of the Tengger Desert and its implications for the provenance of the loess of the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2018, 197:21-34.
doi: 10.1016/j.quascirev.2018.08.002 |
[32] |
Zheng H B, Wei X C, Tada R, et al. Late Oligocene-early Miocene birth of the Taklimakan Desert[J]. Proceedings of the National Academy of Sciences, 2015, 112(25):7662-7667.
doi: 10.1073/pnas.1424487112 |
[33] |
Rittner M, Vermeesch P, Carter A, et al. The provenance of Taklamakan Desert sand[J]. Earth and Planetary Science Letters, 2016, 437:127-137.
doi: 10.1016/j.epsl.2015.12.036 |
[34] |
Stevens T, Palk C, Carter A, et al. Assessing the provenance of loess and desert sediments in northern China using U-Pb dating and morphology of detrital zircons[J]. Geological Society of America Bulletin, 2010, 122(7-8):1331-1344.
doi: 10.1130/B30102.1 |
[35] |
Stevens T, Carter A, Watson T P, et al. Genetic linkage between the Yellow River, the Mu Us Desert and the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2013, 78(19):355-368.
doi: 10.1016/j.quascirev.2012.11.032 |
[36] |
Pullen A, Kapp P, Mccallister A T, et al. Qaidam Basin and northern Tibetan Plateau as dust sources for the Chinese Loess Plateau and paleoclimatic implications[J]. Geology, 2011, 39(11):1031-1034.
doi: 10.1130/G32296.1 |
[37] |
Fan Y X, Li Z J, Wang F, et al. Provenance variations of the Tengger Desert since 2.35 Ma and its linkage with the northern Tibetan Plateau: Evidence from U-Pb age spectra of detrital zircons[J]. Quaternary Science Reviews, 2019, 223:105916, doi: 10.1016/j.quascirev.2019.105916.
doi: 10.1016/j.quascirev.2019.105916 |
[38] |
Xiao G Q, Zong K Q, Li G J, et al. Spatial and glacial-interglacial variations in provenance of the Chinese Loess Plateau[J]. Geophysical Research Letters, 2012, 39(20):L20715, doi: 10.1029/2012 GL053304.
doi: 10.1029/2012 GL053304 |
[39] |
Che X D, Li G J. Binary sources of loess on the Chinese Loess Plateau revealed by U-Pb ages of zircon[J]. Quaternary Research, 2013, 80(3):545-551.
doi: 10.1016/j.yqres.2013.05.007 |
[40] |
Bird A, Stevens T, Rittner M, et al. Quaternary dust source variation across the Chinese Loess Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 435:254-264.
doi: 10.1016/j.palaeo.2015.06.024 |
[41] |
Nie J S, Stevens T, Rittner M, et al. Loess Plateau storage of northeastern Tibetan Plateau-derived Yellow River sediment[J]. Nature Communications, 2015, 6(1):8511, doi: 10.1038/ncomms9511.
doi: 10.1038/ncomms9511 |
[42] | Zhang H Z, Lu H Y, Stevens T, et al. Expansion of dust provenance and aridification of Asia since ~7.2 Ma revealed by detrital zircon U-Pb dating[J]. Geophysical Research Letters, 2018, 45(24):13437-13448. |
[43] | 马榕, 张婉莹, 何梦颖. 基于碎屑锆石U-Pb年龄对黄土高原黄土的空间物源差异分析[J]. 海洋地质前沿, 2019, 35(1):35-42. |
[ Ma Rong, Zhang Wanying, He Mengying. Spatial provenance difference of the loess on Loess Plateau based on detrital zircons U-Pb ages[J]. Marine Geology Frontiers, 2019, 35(1):35-42. ] | |
[44] | Fenn K, Stevens T, Bird A, et al. Insights into the provenance of the Chinese Loess Plateau from joint zircon U-Pb and garnet geochemical analysis of last glacial loess[J]. Quaternary Research: An Interdisciplinary Journal, 2017, 89(3):645-659. |
[45] |
Zhang X Y, Arimoto R, An Z S. Dust emission from Chinese desert sources linked to variations in atmospheric circulation[J]. Journal of Geophysical Research Atmospheres, 1997, 102(D23):28041-28047.
doi: 10.1029/97JD02300 |
[46] |
Sun Y B, Tada R, Chen J, et al. Tracing the provenance of fine-grained dust deposited on the central Chinese loess plateau[J]. Geophysical Research Letters, 2008, 35(1):L01804, doi: 10.1029/2007gl031672.
doi: 10.1029/2007gl031672 |
[47] | 孙博亚, 张云翔, 弓虎军, 等. 洛川黄土碎屑锆石的粒度特征及其古气候意义[J]. 西北大学学报: 自然科学版, 2011, 41(1):119-126. |
[ Sun Boya, Zhang Yunxiang, Gong Hujun, et al. The grain size of the detrital zircon of Luochuan and its paleoclimate implication[J]. Journal of Northwest University: Natural Science Edition, 2011, 41(1):119-126. ] | |
[48] |
Gallet S, Jahn B, Torii M. Geochemical characterization of the Luochuan loess-paleosol sequence, China, and paleoclimatic implications[J]. Chemical Geology, 1996, 133(1-4):67-88.
doi: 10.1016/S0009-2541(96)00070-8 |
[49] |
Jahn B M, Gallet S, Han J M. Geochemistry of the Xining, Xifeng and Jixian sections, Loess Plateau of China: Eolian dust provenance and paleosol evolution during the last 140 ka[J]. Chemical Geology, 2001, 178(1-4):71-94.
doi: 10.1016/S0009-2541(00)00430-7 |
[50] | 杨杰东, 陈骏, 张兆峰, 等. 距今7 Ma以来甘肃灵台剖面Nd和Sr同位素特征[J]. 地球化学, 2005, 34(1):1-6. |
[ Yang Jiedong, Chen Jun, Zhang Zhaofeng, et al. Variations in 143Nd/144Nd and 87Sr/86Sr of Lingtai profile over the past 7 Ma[J]. Geochimica, 2005, 34(1):1-6. ] | |
[51] |
Jeong G Y, Hillier S, Kemp R A. Changes in mineralogy of loess-paleosol sections across the Chinese Loess Plateau[J]. Quaternary Research, 2011, 75(1):245-255.
doi: 10.1016/j.yqres.2010.09.001 |
[52] |
Nie J S, Peng W B. Automated SEM-EDS heavy mineral analysis reveals no provenance shift between glacial loess and interglacial paleosol on the Chinese Loess Plateau[J]. Aeolian Research, 2014, 13:71-75.
doi: 10.1016/j.aeolia.2014.03.005 |
[53] |
Licht A, Pullen A, Kapp P, et al. Eolian cannibalism: Reworked loess and fluvial sediment as the main sources of the Chinese Loess Plateau[J]. Geological Society of America Bulletin, 2016, 128(5-6): B31375.1, doi: 10.1130/B31375.1.
doi: 10.1130/B31375.1 |
[54] |
Pullen A, Ibáñez-Mejía M, Gehrels G E, et al. What happens when n=1000? Creating large-n geochronological datasets with LA-ICP-MS for geologic investigations[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(6):971-980.
doi: 10.1039/C4JA00024B |
[55] |
Vermeesch P. How many grains are needed for a provenance study?[J]. Earth and Planetary Science Letters, 2004, 224(3-4):441-451.
doi: 10.1016/j.epsl.2004.05.037 |
[56] |
Xiong J G, Zhang H P, Zhao X D, et al. Origin of the youngest Cenozoic aeolian deposits in the southeastern Chinese Loess Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 561, doi: 10.1016/j.palaeo.2020.110080.
doi: 10.1016/j.palaeo.2020.110080 |
[57] |
Sun J M. Nd and Sr isotopic variations in Chinese eolian deposits during the past 8 Ma: Implications for provenance change[J]. Earth and Planetary Science Letters, 2005, 240(2):454-466.
doi: 10.1016/j.epsl.2005.09.019 |
[58] |
Alley R B, Andrews J T, Brigham-Grette J, et al. History of the Greenland Ice Sheet: Paleoclimatic insights[J]. Quaternary Science Reviews, 2010, 29(15-16):1728-1756.
doi: 10.1016/j.quascirev.2010.02.007 |
[59] |
Polyak L, Alley R B, Andrews J T, et al. History of sea ice in the Arctic[J]. Quaternary Science Reviews, 2010, 29(15-16):1757-1778.
doi: 10.1016/j.quascirev.2010.02.010 |
[60] |
Raymo M E, Huybers P. Unlocking the mysteries of the ice ages[J]. Nature, 2008, 451(7176):284-285.
doi: 10.1038/nature06589 |
[61] |
Guo Z T, Sun B, Zhang Z S, et al. A major reorganization of Asian climate regime by the Early Miocene[J]. Climate of the Past, 2008, 4(3):153-174.
doi: 10.5194/cp-4-153-2008 |
[62] |
Li J J, Fang X M, Van der Voo R, et al. Magnetostratigraphic dating of river terraces: Rapid and intermittent incision by the Yellow River of the northeastern margin of the Tibetan Plateau during the Quaternary[J]. Journal of Geophysical Research Atmospheres, 1997, 102(B5):10121-10132.
doi: 10.1029/97JB00275 |
[63] | Li J J, Fang X M, Van der Voo R, et al. Late Cenozoic magnetostratigraphy (11-0 Ma) of the Dongshanding and Wangjiashan sections in the Longzhong Basin, western China[J]. Geologie En Mijnbouw, 1997, 76(1-2):121-134. |
[64] |
Li J J, Fang X M, Song C H, et al. Late Miocene-Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes[J]. Quaternary Research, 2014, 81(3):400-423.
doi: 10.1016/j.yqres.2014.01.002 |
[65] |
Lu H Y, Vandenberghe J, An Z S. Aeolian origin and palaeoclimatic implications of the ‘red clay’ (north China) as evidenced by grain-size distribution[J]. Journal of Quaternary Science, 2001, 16(1):89-97.
doi: 10.1002/(ISSN)1099-1417 |
[66] |
Ding Z L, Sun J M, Yang S L, et al. Preliminary magnetostratigraphy of a thick eolian red clay-loess sequence at Lingtai, the Chinese Loess Plateau[J]. Geophysical Research Letters, 1998, 25(8):1225-1228.
doi: 10.1029/98GL00836 |
[67] |
Ding Z L, Sun J M, Liu T S, et al. Wind-blown origin of the Pliocene red clay formation in the central Loess Plateau, China[J]. Earth and Planetary Science Letters, 1998, 161(1-4):135-143.
doi: 10.1016/S0012-821X(98)00145-9 |
[68] |
Nie J S, Peng W B, Moller A, et al. Provenance of the upper Miocene-Pliocene red clay deposits of the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 2014, 407:35-47.
doi: 10.1016/j.epsl.2014.09.026 |
[69] |
Pan F, Li J X, Xu Y, et al. Provenance of Neogene eolian red clay in the Altun region of western China: Insights from U-Pb detrital zircon age data[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 459:488-494.
doi: 10.1016/j.palaeo.2016.07.020 |
[70] |
Pan F, Li J X, Xu Y, et al. Uplift of the Lyuliang Mountains at ca. 5.7 Ma: Insights from provenance of the Neogene eolian red clay of the eastern Chinese Loess Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 502:63-73.
doi: 10.1016/j.palaeo.2018.04.024 |
[71] |
Shang Y, Beets C J, Tang H, et al. Variations in the provenance of the Late Neogene red clay deposits in northern China[J]. Earth and Planetary Science Letters, 2016, 439:88-100.
doi: 10.1016/j.epsl.2016.01.031 |
[1] | 张宁,汪子晨,杨肖,陈彤,邢飞. 新疆水资源与农业种植系统耦合协调及时空差异研究——以粮食和棉花种植系统为例[J]. 干旱区地理, 2023, 46(3): 349-359. |
[2] | 任涛涛,李双双,段克勤,何锦屏. 黄土高原热浪型和缺水型骤旱时空变化特征及其影响因素[J]. 干旱区地理, 2023, 46(3): 360-370. |
[3] | 安彬,肖薇薇,刘宇峰,刘全玉. 1955—2021年黄土高原地区相对湿度时空演变规律[J]. 干旱区地理, 2023, 46(12): 1939-1950. |
[4] | 卓静,胡皓,何慧娟,王智,杨承睿. 陕北黄土高原生态脆弱性时空变异及驱动因素分析[J]. 干旱区地理, 2023, 46(11): 1768-1777. |
[5] | 钱伟, 王春, 代文, 卢旺达, 李敏, 陶宇, 李梦琪. 基于深度学习融合OBIA的黄土高原小流域淤地坝系提取[J]. 干旱区地理, 2023, 46(11): 1803-1812. |
[6] | 沙国良,魏天兴,陈宇轩,傅彦超,任康. 黄土高原丘陵区典型植物群落土壤粒径分布特征[J]. 干旱区地理, 2022, 45(4): 1224-1234. |
[7] | 叶文丽,杨新军,吴孔森,王银. 黄土高原社会-生态系统恢复力时空变化特征与影响因素分析[J]. 干旱区地理, 2022, 45(3): 912-924. |
[8] | 吉珍霞,侯青青,裴婷婷,陈英,谢保鹏,吴华武. 黄土高原植被物候对季节性干旱的敏感性响应[J]. 干旱区地理, 2022, 45(2): 557-565. |
[9] | 孙健武,高军波,马志飞,喻超,张欣怡. 不同地理环境下“空间贫困陷阱”分异机制比较——基于大别山与黄土高原的实证[J]. 干旱区地理, 2022, 45(2): 650-659. |
[10] | 田达睿,唐皓,谭静斌. 陕北黄土高原丘陵沟壑区聚落适宜空间模式研究——以米脂县东沟为例[J]. 干旱区地理, 2022, 45(1): 263-276. |
[11] | 陈颖,马禹. 新疆不同等级暴雨洪涝灾害的时空变化特征[J]. 干旱区地理, 2021, 44(6): 1515-1524. |
[12] | 姜丽,魏天兴,李亦然,魏安琪. 地形因子对陕北黄土丘陵区防护林树种分布的影响[J]. 干旱区地理, 2021, 44(6): 1763-1771. |
[13] | 安彬,肖薇薇,张淑兰,朱妮,张建东. 1960—2017年黄土高原地表温度时空变化特征[J]. 干旱区地理, 2021, 44(3): 778-785. |
[14] | 王钧,李广,聂志刚,董莉霞,闫丽娟. 陇中黄土高原区旱地春小麦产量对干旱胁迫响应的模拟研究[J]. 干旱区地理, 2021, 44(2): 494-506. |
[15] | 姚雪玲,杨国靖,王帅,郭秀江. 黄土丘陵沟壑区不同深度土壤水分对降雨的响应及其稳定性[J]. 干旱区地理, 2021, 44(2): 507-513. |
|