Arid Land Geography ›› 2024, Vol. 47 ›› Issue (7): 1199-1209.doi: 10.12118/j.issn.1000-6060.2023.584
• Biology and Pedology • Previous Articles Next Articles
XIE Junbo1(), WANG Xingpeng1,2, HE Shuai2,3,4(
), LIU Yang1, ZHONG Zhibo2,3,4, LI Yan5, HONG Guojun6
Received:
2023-10-18
Revised:
2023-12-04
Online:
2024-07-25
Published:
2024-07-30
Contact:
HE Shuai
E-mail:junboxie123@gmail.com;xjshzhs@163.com
XIE Junbo, WANG Xingpeng, HE Shuai, LIU Yang, ZHONG Zhibo, LI Yan, HONG Guojun. Soil salinity inversion in the Shajingzi irrigation district based on spectral index modeling[J].Arid Land Geography, 2024, 47(7): 1199-1209.
Tab. 2
Scatterplot fitting of the spectral indices"
二维散点图 | 光谱指数拟合公式 | 拟合度(R2) |
---|---|---|
SI-GBNDVI | 线性:y= -1.0585x+0.2001 | 0.7984 |
二次:y= -2.7603x2-0.7608x+0.1787 | 0.9352 | |
指数:y=0.1915e3.724x | 0.9118 | |
对数:y= -0.3572 | 0.7676 | |
几何:y= -2.772x0.0776+2.3768 | 0.7488 | |
SI-SAVI | 线性:y= -2.9893x+0.5704 | 0.7967 |
二次:y=14.767x2-5.7517x+0.6786 | 0.8372 | |
指数:y=0.69e-10.31x | 0.8270 | |
对数:y= -0.039-0.1694logx-0.0016logx2 | 0.5624 | |
几何:y= -0.4402x0.2033+0.3955 | 0.5598 | |
SI-DVI | 线性:y= -3.5664x+0.5468 | 0.4582 |
二次:y=35.913x2-9.1993x-0.7483 | 0.5471 | |
指数:y=0.609e-11.76x | 0.5253 | |
对数:y= -0.0489-0.2178logx-0.0885logx2 | 0.5205 | |
几何:y= -0.1537x0.9426+0.0924 | 0.5285 | |
SI-MSAVI | 线性:y= -3.2091x-2.636 | 0.7372 |
二次:y=18.488x2+30.464x+12.675 | 0.7888 | |
指数:y=0.316e-10.99x | 0.7767 | |
对数:y= -1.041-0.1793logx-0.0228logx2 | 0.5473 | |
几何:y= -0.328x0.2764-0.717 | 0.5462 |
Tab. 4
Soil salinization classification in the Shajingzi irrigation district"
盐渍化监测模型 | 4个模型的值域区间 | ||||
---|---|---|---|---|---|
非盐渍土 | 轻度盐渍土 | 中度盐渍土 | 重度盐渍土 | 盐渍土 | |
SDI1模型 | 1.71~1.90 | 1.90~1.95 | 1.95~2.02 | 2.02~2.12 | 2.12~2.26 |
SDI2模型 | 0.78~0.96 | 0.96~1.03 | 1.03~1.13 | 1.13~1.25 | 1.25~1.44 |
SDI3模型 | 0.70~0.92 | 0.92~0.97 | 0.97~1.06 | 1.06~1.21 | 1.21~1.42 |
SDI4模型 | 0.38~0.90 | 0.90~1.09 | 1.09~1.20 | 1.20~1.37 | 1.37~1.65 |
[1] | 黄晶, 孔亚丽, 徐青山, 等. 盐渍土壤特征及改良措施研究进展[J]. 土壤, 2022, 54(1): 18-23. |
[Huang Jing, Kong Yali, Xu Qingshan, et al. Progresses for characteristics and amelioration measures of saline soil[J]. Soils, 2022, 54(1): 18-23.] | |
[2] | Li J G, Pu L J, Han M F, et al. Soil salinization research in China: Advances and prospects[J]. Journal of Geographical Sciences, 2014, 24(5): 943-960. |
[3] | 杨劲松, 姚荣江, 王相平, 等. 中国盐渍土研究: 历程、现状与展望[J]. 土壤学报, 2022, 59(1): 10-27. |
[Yang Jinsong, Yao Rongjiang, Wang Xiangping, et al. Research on salt-affected soils in China: History, status quo and prospect[J]. Acta Pedologica Sinica, 2022, 59(1): 10-27.] | |
[4] | Pang G J, Wang T, Liao J, et al. Quantitative model based on field-derived spectral characteristics to estimate soil salinity in Minqin County, China[J]. Soil Science Society of America Journal, 2014, 78(2): 546-555. |
[5] | Li P Y, Wu J H, Qian H. Regulation of secondary soil salinization in semi-arid regions: A simulation research in the Nanshantaizi area along the Silk Road, northwest China[J]. Environmental Earth Sciences, 2016, 75: 1-12. |
[6] | Li H Y, Liu X L, Hu B F, et al. Field-scale characterization of spatio-temporal variability of soil salinity in three dimensions[J]. Remote Sensing, 2020: 12(24): 4043, doi: 10.3390/rs12244043. |
[7] |
张子璇, 宋雨桐, 张惠中, 等. 水文气候影响下黄河三角洲土壤盐分时空动态[J]. 应用生态学报, 2021, 32(4): 1393-1405.
doi: 10.13287/j.1001-9332.202104.012 |
[Zhang Zixuan, Song Yutong, Zhang Huizhong, et al. Spatiotemporal dynamics of soil salinity in the Yellow River Delta under the impacts of hydrology and climate[J]. Chinese Journal of Applied Ecology, 2021, 32(4): 1393-1405.]
doi: 10.13287/j.1001-9332.202104.012 |
|
[8] | 石聪, 陈礼瀚, 张怡菲, 等. 新疆小海子灌区耕地土壤盐渍化特征研究[J]. 干旱区地理, 2023, 46(2): 321-329. |
[Shi Cong, Chen Lihan, Zhang Yifei, et al. Soil salinization characteristics of cultivated land in Xiaohaizi irrigation area of Xinjiang[J]. Arid Land Geography, 2023, 46(2): 321-329.] | |
[9] | Stavi I, Thevs N, Priori S. Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures[J]. Frontiers in Environmental Science, 2021, 9: 712831, doi: 10.3389/fenvs.2021.712831. |
[10] | Tan J, Ding J L, Han L J, et al. Exploring planet scope satellite capabilities for soil salinity estimation and mapping in arid regions oases[J]. Remote Sensing, 2023, 15(4): 1066, doi: 10.3390/rs15041066. |
[11] | Zhao W J, Zhou C, Zhou C Q, et al. Soil salinity inversion model of oasis in arid area based on UAV multispectral remote sensing[J]. Remote Sensing, 2022, 14(8): 1804, doi: 10.3390/rs14081804. |
[12] | Zhou X H, Zhang F, Liu C J, et al. Soil salinity inversion based on novel spectral index[J]. Environmental Earth Sciences, 2021, 80: 1-13. |
[13] | Wu T S, Fu H P, Feng F, et al. A new approach to predict normalized difference vegetation index using time-delay neural network in the arid and semi-arid grassland[J]. International Journal of Remote Sensing, 2019, 40(23): 9050-9063. |
[14] |
Matsushita B, Yang W, Chen J, et al. Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: A case study in high-density cypress forest[J]. Sensors, 2007, 7(11): 2636-2651.
doi: 10.3390/s7112636 pmid: 28903251 |
[15] | Liu J, Zhang L, Dong T, et al. The applicability of remote sensing models of soil salinization based on feature space[J]. Sustainability, 2021, 13(24): 13711, doi: 10.3390/su132413711. |
[16] | 王飞, 丁建丽, 伍漫春. 基于NDVI-SI特征空间的土壤盐渍化遥感模型[J]. 农业工程学报, 2010, 26(8): 168-173. |
[Wang Fei, Ding Jianli, Wu Manchun. Remote sensing monitoring models of soil salinization based on NDVI-SI feature space[J]. Transactions of the CSAE, 2010, 26(8): 168-173.] | |
[17] | Cheng T T, Zhang J H, Zhang S, et al. Monitoring soil salinization and its spatiotemporal variation at different depths across the Yellow River Delta based on remote sensing data with multi-parameter optimization[J]. Environmental Science Pollution Research, 2022, 29: 24269-24285. |
[18] | 张添佑, 王玲, 曾攀丽, 等. 基于MSAVI-SI特征空间的玛纳斯河流域灌区土壤盐渍化研究[J]. 干旱区研究, 2016, 33(3): 499-505. |
[Zhang Tianyou, Wang Ling, Zeng Panli, et al. Soil salinization in the irrigated area of the Manas River Basin based on MSAVI-SI feature space[J]. Arid Zone Research, 2016, 33(3): 499-505.] | |
[19] | 冯娟, 丁建丽, 魏雯瑜. 基于Albedo-MSAVI特征空间的渭库绿洲土壤盐渍化研究[J]. 中国农村水利水电, 2018, 2: 147-152. |
[Feng Juan, Ding Jianli, Wei Wenyu. A study of soil salinization in Weigan and Kuqa Rivers oasis based on Albedo-MSAVI feature space[J]. China Rural Water and Hydropower, 2018, 2: 147-152.] | |
[20] | 张素铭, 赵庚星, 王卓然, 等. 滨海盐渍区土壤盐分遥感反演及动态监测[J]. 农业资源与环境学报, 2018, 35(4): 349-358. |
[Zhang Suming, Zhao Gengxing, Wang Zhuoran, et al. Remote sensing inversion and dynamic monitoring of soil salt in coastal saline area[J]. Journal of Agricultural Resources and Environment, 2018, 35(4): 349-358.] | |
[21] | 杨宁, 崔文轩, 张智韬, 等. 无人机多光谱遥感反演不同深度土壤盐分[J]. 农业工程学报, 2020, 36(22): 13-21. |
[Yang Ning, Cui Wenxuan, Zhang Zhitao, et al. Soil salinity inversion at different depths using improved spectral index with UAV multispectral remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(22): 13-21.] | |
[22] | 王飞, 丁建丽, 魏阳, 等. 基于Landsat 系列数据的盐分指数和植被指数对土壤盐度变异性的响应分析——以新疆天山南北典型绿洲为例[J]. 生态学报, 2017, 37(15): 5007-5022. |
[Wang Fei, Ding Jianli, Wei Yang, et al. Sensitivity analysis of soil salinity and vegetation indices to detect soil salinity variation by using Landsat series images: Applications in different oases in Xinjiang, China[J]. Acta Ecologica Sinica, 2017, 37(15): 5007-5022.] | |
[23] | Fan X W, Liu Y B, Tao J M, et al. Soil salinity retrieval from advanced multi-spectral sensor with partial least square regression[J]. Remote Sensing, 2015, 7(1): 488-511. |
[24] | Wang J Z, Ding J L, Abulimiti A, et al. Quantitative estimation of soil salinity by means of different modeling methods and visible-near infrared (VIS-NIR) spectroscopy, Ebinur Lake wetland, northwest China[J]. PeerJ, 2018, 6: e4703, doi: 10.7717/peerj.4703. |
[25] | Khan N M, Sato Y. Monitoring hydro-salinity status and its impact in irrigated semi-arid areas using IRS-1B LISS-II data[J]. Asian Journal of Geoinformatics, 2001, 1(3): 63-73. |
[26] | Pinty B, Lavergne T, Dickinson R E, et al. Simplifying the interaction of land surfaces with radiation for relating remote sensing products to climate models[J]. Journal of Geophysical Research: Atmospheres, 2006, 111: D02116, doi: 10.1029/2005JD005952. |
[27] | 代云豪, 管瑶, 冯春涌, 等. 基于光谱指数建模的阿拉尔垦区土壤盐渍化信息提取与分析[J]. 自然资源遥感, 2023, 35(1): 205-212. |
[Dai Yunhao, Guan Yao, Feng Chunyong, et al. Extraction and analysis of soil salinization information of Alar reclamation area based on spectral index modeling[J]. Remote Sensing for Natural Resources, 2023, 35(1): 205-212.] | |
[28] |
边玲玲, 王卷乐, 郭兵, 等. 基于特征空间的黄河三角洲垦利县土壤盐分遥感提取[J] 遥感技术与应用, 2020, 35(1): 211-218.
doi: 10.11873/j.issn.1004-0323.2020.1.0211 |
[Bian Lingling, Wang Juanle, Guo Bing, et al. Remote sensing extraction of soil salinity in Yellow River Delta Kenli County based on feature space[J]. Remote Sensing Technology and Application, 2020, 35(1): 211-218.] | |
[29] | Chen Y W, Du Y Y, Yin H Y, et al. Radar remote sensing-based inversion model of soil salt content at different depths under vegetation[J]. PeerJ, 2022, 10: e13306, doi: 10.7717/peerj.13306. |
[30] | 谭丞轩, 张智韬, 许崇豪, 等. 无人机多光谱遥感反演各生育期玉米根域土壤含水率[J]. 农业工程学报, 2020, 36(10): 63-74. |
[Tan Chengxuan, Zhang Zhitao, Xu Chonghao, et al. Soil water content inversion model in field maize root zone based on UAV multispectral remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(10): 63-74.] | |
[31] | Hu J, Peng J, Zhou Y, et al. Quantitative estimation of soil salinity using UAV-borne hyperspectral and satellite multispectral images[J]. Remote Sensing, 2019, 11(7): 736, doi: 10.3390/rs11070736. |
[32] | Zhang J R, Zhang Z T, Chen J Y, et al. Estimating soil salinity with different fractional vegetation cover using remote sensing[J]. Land Degradation & Development, 2021, 32(2): 597-612. |
[33] | Chen B L, Zheng H W, Luo G P, et al. Adaptive estimation of multi-regional soil salinization using extreme gradient boosting with Bayesian TPE optimization[J]. International Journal of Remote Sensing, 2022, 43(3): 778-811. |
[34] | Wang L Y, Hu P, Zheng H W, et al. Integrative modeling of heterogeneous soil salinity using sparse ground samples and remote sensing images[J]. Geoderma, 2023, 430: 116321, doi: 10.1016/j.geoderma.2022.116321. |
[35] | Xu H T, Chen C B, Zheng H W, et al. AGA-SVR-based selection of feature subsets and optimization of parameter in regional soil salinization monitoring[J]. International Journal of Remote Sensing, 2020, 41(12): 4470-4495. |
[1] | MENG Huimin, ZHAN Chesheng, HU Shi, LIN Zhonghui. Research progress on simulation of soil water-salt transport in large-scale irrigation districts [J]. Arid Land Geography, 2024, 47(9): 1566-1576. |
[2] | SHI Cong, CHEN Lihan, ZHANG Yifei, HE Shuai, XIE Haixia. Soil salinization characteristics of cultivated land in Xiaohaizi Irrigation Area of Xinjiang [J]. Arid Land Geography, 2023, 46(8): 1314-1323. |
[3] | LI Ke, DING Jianli, HAN Lijing, GE Xiangyu, GU Yongsheng, ZHOU Qian, LYU Yangxia. Digital mapping of soil salinization in a typical oasis based on PlanetScope images [J]. Arid Land Geography, 2023, 46(8): 1291-1302. |
[4] | JIANG Lei, LIU Xiaolong, GUO Shuai, HE Liang, XING Jianlei, GUO Junjie. Evaluation of soil salinization susceptibility based on Logistic regression analysis: A case of Tarim irrigation area in southern Xinjiang [J]. Arid Land Geography, 2023, 46(11): 1858-1867. |
[5] | DING Yuekai, LIU Rui, ZHANG Cuilan, TONG Liyuan, DONG Jun. Remote sensing monitoring of glacier and glacial lake changes in Yairu Zangbo Basin, Himalayas [J]. Arid Land Geography, 2022, 45(6): 1870-1880. |
[6] | DAI Yunhao,GUAN Yao,ZHANG Qinkai,SUN Junjie,HE Xinghong. Remote sensing monitoring and temporal and spatial characteristics of soil salinization in Aral Reclamation Area [J]. Arid Land Geography, 2022, 45(4): 1176-1185. |
[7] | ZHAO Qiaozhen,DING Jianli,HAN Lijing,JIN Xiaoye,HAO Jianping. Exploring the application of MODIS and Landsat spatiotemporal fusion images in soil salinization: A case of Ugan River-Kuqa River Delta Oasis [J]. Arid Land Geography, 2022, 45(4): 1155-1164. |
[8] | CAO Xiao-yi, DING Jian-li, GE Xiang-yu, LIANG Jing, CHEN Wen-qian, CHEN Xiang-yue, TANG Pu-en. Estimation of soil conductivity based on spectral simulation of different satellites [J]. Arid Land Geography, 2020, 43(1): 172-181. |
[9] | LIU Yang, ZHANG Nan-nan, GUO Hong-yan, ZHUANG Yang, DONG Wen-tong, ZOU Li-qun, ZHOU Hong-ying. Spatial and temporal characteristics of environmental elements evolution in oil field based on time series of remote sensing: Acase of Karamay City [J]. 干旱区地理, 2018, 41(3): 616-624. |
[10] | WANG Shuang, DING Jian-li, WANG lu, NIU Zeng-yi. Remote sensing monitoring of soil salinization based on surface spectral modeling [J]. , 2016, 39(1): 190-198. |
[11] | NIU Zeng-yi, DING Jian-li, LI Yan-hua, WANG Shuang, WANG Lu, MA Cheng-xia. Soil salinization information extraction method based on GF-1 image [J]. , 2016, 39(1): 171-181. |
[12] | HE Jian-cun, BAI Yun-gang, ZHANG Yan-jun. Soil drought characteristics in Xinjiang with remote sensing data [J]. , 2015, 38(4): 735-742. |
[13] | . Desertification monitoring with remote sensing in the Central Asia:a case of Turkmenistan [J]. , 2013, 36(4): 724-730. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 66
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 153
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|