Arid Land Geography ›› 2023, Vol. 46 ›› Issue (9): 1467-1480.doi: 10.12118/j.issn.1000-6060.2022.499
• Biology and Pedology • Previous Articles Next Articles
WANG Xin1,2,3(),JIN Zhengzhong1,2(),SHI Jianfei1,2,3,YANG Xiaoliang1,2,3,XU Xinwen1,2
Received:
2022-10-01
Revised:
2022-11-21
Online:
2023-09-25
Published:
2023-09-28
WANG Xin, JIN Zhengzhong, SHI Jianfei, YANG Xiaoliang, XU Xinwen. Effect of plant fiber blanket cover on hydrothermal distribution of tailing sand in arid area[J].Arid Land Geography, 2023, 46(9): 1467-1480.
Tab. 1
Cover treatment types and basic properties of the covers"
覆盖类型 | 规格/g·m-2 | 处理 | 厚度/mm | 覆盖物组成 |
---|---|---|---|---|
黄麻纤维毯 | 300 | H3 | 2.7±0.2 | 由上下2层固定网(PP网)夹持黄麻纤维层并缝合形成的毯状物 |
500 | H5 | 4.4±0.3 | ||
700 | H7 | 6.1±0.4 | ||
900 | H9 | 8.2±0.4 | ||
稻草纤维毯 | 300 | D3 | 2.8±0.2 | 由上下2层固定网(PP网)夹持稻草纤维层并缝合形成的毯状物 |
500 | D5 | 5.0±0.2 | ||
700 | D7 | 7.1±0.2 | ||
900 | D9 | 10.0±0.5 | ||
椰丝纤维毯 | 300 | Y3 | 2.5±0.2 | 由上下2层固定网(PP网)夹持椰丝纤维层并缝合形成的毯状物 |
500 | Y5 | 4.1±0.1 | ||
700 | Y7 | 5.6±0.4 | ||
900 | Y9 | 6.9±0.1 | ||
棕榈纤维毯 | 300 | Z3 | 2.6±0.3 | 由上下2层固定网(PP网)夹持棕榈纤维层并缝合形成的毯状物 |
500 | Z5 | 3.9±0.5 | ||
700 | Z7 | 5.8±0.1 | ||
900 | Z9 | 7.2±0.1 | ||
无覆盖 | - | CK | - | - |
Tab. 2
Average volume water content of tailing sand at 0-30 cm depth under the covers of different plant fiber blankets /%"
处理 | 蒸发时间 | |||||
---|---|---|---|---|---|---|
0 d | 3 d | 6 d | 9 d | 12 d | 15 d | |
H3 | 28.00±0.13Ccd | 28.49±2.51Cc | 25.43±0.36Bc | 24.73±0.24Bc | 20.66±0.68Ac | 19.26±0.37Ad |
H5 | 30.09±0.48Ee | 26.10±0.59Ca | 27.36±0.09De | 25.61±0.51Cd | 23.73±0.22Be | 22.70±0.28Agh |
H7 | 27.35±0.05Dbc | 28.46±0.23Ec | 27.64±0.05Def | 25.56±0.38Cd | 23.97±0.63Be | 23.31±0.35Ah |
H9 | 31.03±0.25Df | 31.70±0.43Eef | 31.23±0.14Dj | 29.48±0.35Cg | 27.64±0.36Bh | 26.77±0.45Aj |
D3 | 28.38±0.31Ed | 28.40±0.33Ec | 26.37±0.19Dd | 24.66±0.22Cc | 21.80±0.91Bd | 20.35±0.35Ae |
D5 | 28.46±0.03Dd | 30.12±0.20Ed | 27.82±0.64Defg | 26.90±0.48Ce | 23.96±0.26Be | 22.72±0.41Agh |
D7 | 32.31±0.23Eg | 32.30±0.37Ef | 31.05±0.31Dj | 29.57±0.27Cg | 26.46±0.34Ag | 27.62±0.51Bk |
D9 | 31.83±0.12Ffg | 25.83±0.15Aa | 30.24±0.44Ei | 29.52±0.32Dg | 28.47±0.26Ci | 26.37±0.38Bj |
Y3 | 31.20±0.15Ef | 32.26±0.74Ff | 28.15±0.39Dfgh | 27.19±0.05Ce | 23.58±0.10Be | 21.91±0.10Af |
Y5 | 29.40±0.10De | 30.18±0.45Dd | 26.61±0.22Cd | 26.15±0.35Cd | 24.90±0.30Bf | 22.04±0.85Afg |
Y7 | 31.83±0.20Ffg | 31.01±0.31Ede | 30.17±0.30Di | 28.21±0.07Cf | 26.60±0.21Bg | 24.50±0.32Ai |
Y9 | 31.17±0.77Ef | 30.19±0.13Dd | 28.29±0.09Cgh | 27.07±0.25Be | 26.53±0.58Bg | 24.20±0.47Ai |
Z3 | 26.85±0.48Eab | 26.34±0.10Eab | 23.79±0.24Db | 22.33±0.60Cb | 18.90±0.27Bb | 16.23±0.44Ab |
Z5 | 26.24±0.13Ea | 30.38±0.27Fd | 22.89±0.67Da | 21.17±0.54Ca | 18.49±0.28Bb | 17.08±0.46Ac |
Z7 | 29.34±0.07De | 27.67±0.14Cc | 26.28±0.29Bd | 26.02±0.93Bd | 23.47±0.40Ae | 22.77±0.18Agh |
Z9 | 34.43±0.38Fh | 32.12±0.16Eef | 28.73±0.43Ch | 31.34±0.05Dh | 26.59±0.35Bg | 24.85±0.38Ai |
CK | 31.12±1.27Ff | 27.41±0.19Ebc | 23.78±0.39Db | 20.67±0.17Ca | 16.85±0.06Ba | 13.59±0.17Aa |
Tab. 3
Fitting parameters of cumulative evaporation and time of tailing sand under the covers of different plant fiber blankets"
处理 | W=atb | W=aebt | W=alnt+b | W=at+b | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | R2 | a | b | R2 | a | b | R2 | a | b | R2 | ||||
H3 | 3.107 | 0.949 | 0.999 | 5.204 | 0.156 | 0.885 | 14.447 | -4.700 | 0.884 | 2.685 | 0.688 | 0.999 | |||
H5 | 2.922 | 0.909 | 0.999 | 4.742 | 0.151 | 0.899 | 12.264 | -3.679 | 0.880 | 2.285 | 0.851 | 0.999 | |||
H7 | 2.776 | 0.814 | 0.994 | 4.217 | 0.137 | 0.921 | 8.972 | -1.900 | 0.867 | 1.681 | 1.337 | 0.996 | |||
H9 | 1.895 | 0.955 | 0.997 | 3.206 | 0.156 | 0.874 | 8.917 | -2.890 | 0.873 | 1.665 | 0.379 | 0.995 | |||
D3 | 2.983 | 1.015 | 0.997 | 5.269 | 0.165 | 0.860 | 16.407 | -5.948 | 0.886 | 3.047 | 0.195 | 0.999 | |||
D5 | 2.413 | 1.010 | 0.998 | 4.230 | 0.165 | 0.867 | 13.177 | -4.829 | 0.880 | 2.455 | 0.039 | 0.999 | |||
D7 | 2.145 | 0.996 | 0.997 | 3.739 | 0.162 | 0.864 | 11.220 | -3.927 | 0.882 | 2.087 | 0.248 | 0.998 | |||
D9 | 1.856 | 0.976 | 0.996 | 3.220 | 0.158 | 0.854 | 9.079 | -2.886 | 0.896 | 1.675 | 0.604 | 0.996 | |||
Y3 | 4..562 | 0.931 | 0.999 | 7.659 | 0.152 | 0.867 | 19.838 | -5.668 | 0.901 | 3.650 | 2.027 | 0.997 | |||
Y5 | 2.760 | 1.028 | 0.997 | 4.932 | 0.166 | 0.855 | 15.661 | -5.744 | 0.889 | 2.902 | 0.166 | 0.999 | |||
Y7 | 2.958 | 0.979 | 0.997 | 5.123 | 0.159 | 0.860 | 14.690 | -4.826 | 0.890 | 2.720 | 0.736 | 0.998 | |||
Y9 | 2.852 | 0.983 | 0.997 | 4.976 | 0.159 | 0.852 | 14.199 | -4.565 | 0.901 | 2.613 | 0.493 | 0.998 | |||
Z3 | 3.857 | 0.943 | 0.998 | 6.544 | 0.153 | 0.861 | 17.231 | -4.995 | 0.903 | 3.165 | 1.735 | 0.997 | |||
Z5 | 3.614 | 0.886 | 0.997 | 5.918 | 0.144 | 0.865 | 13.767 | -3.237 | 0.899 | 2.534 | 2.102 | 0.996 | |||
Z7 | 3.392 | 0.885 | 0.996 | 5.575 | 0.144 | 0.859 | 12.837 | -2.915 | 0.903 | 2.357 | 2.110 | 0.995 | |||
Z9 | 3.274 | 0.868 | 0.992 | 5.408 | 0.139 | 0.833 | 11.494 | -1.982 | 0.928 | 2.076 | 2.789 | 0.991 | |||
CK | 6.653 | 0.987 | 0.999 | 11.522 | 0.161 | 0.870 | 33.909 | -11.511 | 0.900 | 6.232 | 1.703 | 0.994 |
[1] | 张越男. 大宝山尾矿库区地下水重金属污染特征及健康风险研究[D]. 长沙: 湖南大学, 2013. |
[Zhang Yuenan. The polluion characteristics and assessment of health risk from heavy metals in groundwater of Dabaoshan tailing zone, Guangdong Province, China[D]. Changsha: Hunan University, 2013.] | |
[2] | 王海涛, 田玮, 岳昌盛, 等. 金属尾矿土壤重金属污染及修复技术研究现状[J]. 中国资源综合利用, 2022, 40(5): 127-131. |
[Wang Haitao, Tian Wei, Yue Changsheng, et al. Research status of heavy metal pollution and remediation technology in metal tailings soil[J]. China Resources Comprehensive Utilization, 2022, 40(5): 127-131.] | |
[3] | 赵庆龄, 张乃弟, 路文如. 土壤重金属污染研究回顾与展望Ⅱ——基于三大学科的研究热点与前沿分析[J]. 环境科学与技术, 2010, 33(7): 102-106, 137. |
[Zhao Qingling, Zhang Naidi, Lu Wenru. Research review and prospect on soil heavy metals pollution Ⅱ: Research focus and analysis based on three major disciplines[J]. Environmental Science & Technology, 2010, 33(7): 102-106, 137.] | |
[4] | Kang B, Zha F S, Deng W H, et al. Biocementation of pyrite tailings using microbially induced calcite carbonate precipitation[J]. Molecules, 2022, 27(11): 3608, doi: 10.3390/molecules27113608. |
[5] | He Z F, Xu Y T, Yang X L, et al. Passivation of heavy metals in copper-nickel tailings by in-situ bio-mineralization: A pilot trial and mechanistic analysis[J]. The Science of the Total Environment, 2022, 838(Pt4): 156504, doi: 10.1016/j.scitotenv.2022.156504. |
[6] | 肖海, 胡欢, 吕广柳, 等. 微生物诱导碳酸钙沉淀影响因素研究进展分析[J]. 三峡大学学报(自然科学版), 2022, 44(6): 66-75. |
[Xiao Hai, Hu Huan, Lü Guangliu, et al. Research progresson factors of microbial induced calcium carbonate precipitation[J]. Journal of China Three Gorges University (Natural Sciences Edition), 2022, 44(6): 66-75.] | |
[7] | Hu X D, Fu X Z, Pan P, et al. Incorporation of mixing microbial induced calcite precipitation (MICP) with pretreatment procedure for road soil subgrade stabilization[J]. Materials, 2022, 15(19): 6529, doi: 10.3390/ma15196529. |
[8] |
Hejazi S M, Sheikhzadeh M, Abtahi S M, et al. A simple review of soil reinforcement by using natural and synthetic fibers[J]. Construction and Building Materials, 2012, 30: 100-116.
doi: 10.1016/j.conbuildmat.2011.11.045 |
[9] | 王平, 陈娟, 谢成俊, 等. 干旱地区覆盖方式对土壤养分及马铃薯产量的影响[J]. 中国土壤与肥料, 2021(4): 118-125. |
[Wang Ping, Chen Juan, Xie Chengjun, et al. Effects of different covering modes on soil nutrient and potato (Solanum tuberosum L.) yield in arid areas[J]. Soils and Fertilizers Sciences in China, 2021(4): 118-125.] | |
[10] |
吕剑, 李金武, 郁继华, 等. 不同地表覆盖方式对松花菜土壤温度、产量和水分利用的影响[J]. 核农学报, 2021, 35(8): 1941-1951.
doi: 10.11869/j.issn.100-8551.2021.08.1941 |
[Lü Jian, Li Jinwu, Yu Jihua, et al. Effects of different surface covering methods on soil temperature, yeild and water utilization of loose-curd cauliflower (Brassica oleracea var. botrytis L.)[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(8): 1941-1951.]
doi: 10.11869/j.issn.100-8551.2021.08.1941 |
|
[11] | 李宏钧, 孔亚平, 张岩. 植物纤维毯生态防护效益研究述评[J]. 中国水土保持科学, 2016, 14(3): 146-154. |
[Li Hongjun, Kong Yaping, Zhang Yan. A review of geotextiles ecological protection technology[J]. Science of Soil and Water Conservation, 2016, 14(3): 146-154.] | |
[12] | 陈学平, 简丽, 贾献卓, 等. 植物纤维毯覆盖对公路边坡植被重建的影响[J]. 公路交通科技, 2017, 34(2): 143-148. |
[Chen Xueping, Jian Li, Jia Xianzhuo, et al. Effect of plant fiber blanket coverage on revegetation of highway side slope[J]. Journal of Highway and Transportation Research and Development, 2017, 34(2): 143-148.] | |
[13] |
Jankauskas B, Jankauskiene G, Fullen M A. Soil conservation on road embankments using palm-mat geotextiles: Field studies in Lithuania[J]. Soil Use and Management, 2012, 28(2): 266-275.
doi: 10.1111/sum.2012.28.issue-2 |
[14] | 张梅花. 生态垫覆盖对沙丘土壤水分及荒漠灌木生长的影响[J]. 水利规划与设计, 2019(4): 68-71. |
[Zhang Meihua. Effects of eco-mat mulching on soil moisture and desert shrub growth in dune[J]. Water Resources Planning and Design, 2019(4): 68-71.] | |
[15] | 杨晓晖, 于春堂, 秦永胜. 流动沙丘上生态垫防风固沙效果初步评价[J]. 生态环境, 2007, 16(3): 964-967. |
[Yang Xiaohui, Yu Chuntang, Qin Yongsheng. A preliminary evaluation of ecomat function on windbreak and sand-fixation in mobile sand dune[J]. Ecology and Environment, 2007, 16(3): 964-967.] | |
[16] |
张利, 罗麟, 朱欣伟, 等. 生态毯对川西北流动沙地生态恢复的影响[J]. 草地学报, 2017, 25(5): 1156-1159.
doi: 10.11733/j.issn.1007-0435.2017.05.034 |
[Zhang Li, Luo Lin, Zhu Xinwei, et al. Effect of eco-mat on ecological restoration in shifting sandy land of northwest Sichuan[J]. Acta Agrestia Sinica, 2017, 25(5): 1156-1159.]
doi: 10.11733/j.issn.1007-0435.2017.05.034 |
|
[17] | 刘平, 马履一, 郝亦荣. 生态垫对河滩造林地土壤温湿度和杂草的影响[J]. 中国水土保持科学, 2005, 3(1): 77-81. |
[Liu Ping, Ma Lüyi, Hao Yirong. Effect of eco-mat on soil temperature and water content and weed of afforestation in river-beach[J]. Science of Soil and Water Conservation, 2005, 3(1): 77-81.] | |
[18] | 高甲荣, 孙保平, 王淑琴, 等. 可降解生态垫在河滩地造林中抑制杂草的效果[J]. 中国水土保持科学, 2004, 2(1): 38-41. |
[Gao Jiarong, Sun Baoping, Wang Shuqin, et al. Weed controlling effect of degradable ecomat in river-beach afforestation[J]. Science of Soil and Water Conservation, 2004, 2(1): 38-41.] | |
[19] | 张平, 王树森, 马迎梅, 等. 黄土丘陵沟壑区不同草本植物生长期植物纤维毯对沟道边坡产流产沙的影响[J]. 水土保持学报, 2020, 34(5): 49-55. |
[Zhang Ping, Wang Shusen, Ma Yingmei, et al. Effects of plant fiber blankets of different herbaceous plant growth stages on runoff and sediment yield in the loess hilly and gully region[J]. Journal of Soil and Water Conservation, 2020, 34(5): 49-55.] | |
[20] | 肖兴富, 李文奇, 常佩丽, 等. 棕榈纤维垫法恢复水库岸边植被施工技术[J]. 南水北调与水利科技, 2005, 3(4): 26-28. |
[Xiao Xingfu, Li Wenqi, Chang Peili, et al. Technique of macrophyte in littoral zone by palm mat with interpolatory sallow[J]. South-to-North Water Transfers and Water Science & Technology, 2005, 3(4): 26-28.] | |
[21] | 于丹丹, 贾黎明, 贾忠奎, 等. 生态垫及保水剂对废弃砂石坑立地造林的影响[J]. 南京林业大学学报(自然科学版), 2015, 39(6): 99-104. |
[Yu Dandan, Jia Liming, Jia Zhongkui, et al. Effects of eco-mat and super absorbent polymers on forest in waste sand and gravel pit sites[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2015, 39(6): 99-104.] | |
[22] | 王珍珍, 周长泉, 许建堂. 基于不同覆盖厚度的景泰县土壤水分蒸发研究[J]. 甘肃科技, 2018, 34(15): 30-32, 73. |
[Wang Zhenzhen, Zhou Changquan, Xu Jiantang. Soil water evaporation in Jingtai County based on different cover thickness[J]. Gansu Science and Technology, 2018, 34(15): 30-32, 73.] | |
[23] | 蒋文君, 康银红, 陈瑶, 等. 不同覆盖方式对土壤水热分布的影响[J]. 土壤通报, 2022, 53(1): 74-80. |
[Jiang Wenjun, Kang Yinhong, Chen Yao, et al. The influence of different mulching methods on the distribution of soil water and heat[J]. Chinese Journal of Soil Science, 2022, 53(1): 74-80.] | |
[24] | 肖美珊. 土壤检验技术[M]. 北京: 化学工业出版社, 2011: 147-150. |
[Xiao Meishan. Soil inspection technique[M]. Beijing: Chemical Industry Press, 2011: 147-150.] | |
[25] | 王晓燕, 陈洪松, 王克林. 红壤坡地不同土地利用方式土壤蒸发和植被蒸腾规律研究[J]. 农业工程学报, 2007, 23(12): 41-45. |
[Wang Xiaoyan, Chen Hongsong, Wang Kelin. Rules of soil evaporation and plant transpiration under different land use patterns in the sloping land of red soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(12): 41-45.] | |
[26] | 张建国, 李红伟, 李雅菲, 等. 土壤盐结皮人工培育及其破损程度对土壤蒸发的影响[J]. 农业工程学报, 2019, 35(13): 138-144. |
[Zhang Jianguo, Li Hongwei, Li Yafei, et al. Artificial cultivation of soil salt crust and effects of its damage rate on soil evaporation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(13): 138-144.] | |
[27] | 唐洋, 李新虎, 郭敏, 等. 不同初始盐分浓度下土壤盐结皮的形成过程及其对蒸发的影响机理[J]. 干旱区地理, 2022, 45(4): 1137-1145. |
[Tang Yang, Li Xinhu, Guo Min, et al. Formation process of soil salt crust and its influence mechanism on evaporation under different initial salt concentrations[J]. Arid Land Geography, 2022, 45(4): 1137-1145.] | |
[28] | 张建生, 张梅花, 李庆会, 等. 生态垫覆盖对沙漠土壤水分和温度的影响[J]. 中国沙漠, 2008, 28(2): 280-283. |
[Zhang Jiansheng, Zhang Meihua, Li Qinghui, et al. Effects of eco-mat mulch on soil temperature and water content in desert[J]. Journal of Desert Research, 2008, 28(2): 280-283.] | |
[29] | 杨越, 曹波, 孙保平, 等. 生态垫对流动沙地土壤温湿度和养分的影响[J]. 水土保持研究, 2008, 15(3): 81-83, 87. |
[Yang Yue, Cao Bo, Sun Baoping, et al. Effect of eco-mat on soil temperature and moisture and soil nutrient in drifting sand land[J]. Research of Soil and Water Conservation, 2008, 15(3): 81-83, 87.] | |
[30] | 李宏钧, 孔亚平, 张岩, 等. 植物纤维毯对道路边坡微生境的影响[J]. 公路交通科技, 2016, 33(6): 146-151. |
[Li Hongjun, Kong Yaping, Zhang Yan, et al. Effect of geotextile on road slope microhabitat[J]. Journal of Highway and Transportation Research and Development, 2016, 33(6): 146-151.] | |
[31] | 马永财, 滕达, 衣淑娟, 等. 秸秆覆盖还田及腐解率对土壤温湿度与玉米产量的影响[J]. 农业机械学报, 2021, 52(10): 90-99. |
[Ma Yongcai, Teng Da, Yi Shujuan, et al. Effects of straw mulching and decomposition rate on soil temperature and humidity and maize yield[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(10): 90-99.] | |
[32] | 刘立豪, 王辉, 谭帅, 等. 不同覆盖方式对土壤水热及猕猴桃产量的影响[J]. 排灌机械工程学报, 2022, 40(2): 188-195. |
[Liu Lihao, Wang Hui, Tan Shuai, et al. Effects of different mulching patterns on soil moisture, soil temperature and yield of kiwifruit[J]. Journal of Drainage and Irrigation Machinery Engineering, 2022, 40(2): 188-195.] | |
[33] |
赵永敢, 逄焕成, 李玉义, 等. 秸秆隔层对盐碱土水盐运移及食葵光合特性的影响[J]. 生态学报, 2013, 33(17): 5153-5161.
doi: 10.5846/stxb |
[Zhao Yonggan, Pang Huancheng, Li Yuyi, et al. Effects of straw interlayer on soil water and salt movement and sunflower photosynthetic characteristics in saline-alkali soils[J]. Acta Ecologica Sinica, 2013, 33(17): 5153-5161.]
doi: 10.5846/stxb |
|
[34] | 王丽丽, 余海龙, 黄菊莹, 等. 不同覆盖措施的土壤生态环境效应和作物增产效应述评[J]. 江苏农业科学, 2016, 44(7): 11-15. |
[Wang Lili, Yu Hailong, Huang Juying, et al. Review on the effects of different mulching measures on soil ecological environment and crop yield[J]. Jiangsu Agricultural Sciences, 2016, 44(7): 11-15.] | |
[35] | 王佳欢, 杨新兵, 刘彦林, 等. 石灰岩弃渣与农田土复配土壤水分蒸发及覆盖物保水性能[J]. 水土保持学报, 2022, 36(5): 369-376. |
[Wang Jiahuan, Yang Xinbing, Liu Yanlin, et al. Water evaporation and mulch water retention of mixed soils with limestone waste residue and farmland soil[J]. Journal of Soil and Water Conservation, 2022, 36(5): 369-376.] | |
[36] | 孙博, 解建仓, 汪妮, 等. 不同秸秆覆盖量对盐渍土蒸发、水盐变化的影响[J]. 水土保持学报, 2012, 26(1): 246-250. |
[Sun Bo, Xie Jiancang, Wang Ni, et al. Effect of straw mulching on change of evaporation and water-salt in the saline soil[J]. Journal of Soil and Water Conservation, 2012, 26(1): 246-250.] |
[1] | LIU Wenli, CHEN Zhang, ZHAO Yong, LIANG Yuxin. Influences of soil moisture anomalies in May on June precipitation in Central Asia [J]. Arid Land Geography, 2024, 47(1): 38-47. |
[2] | FU Guangxiang, HE Qing, WANG Yonghui, MA Mingjie, YIN Lulu, ZHANG Qian. Characteristics of wind, temperature, humidity profiles and energy exchange in the surface layer in the southern edge of Taklimakan Desert [J]. Arid Land Geography, 2024, 47(1): 68-80. |
[3] | LU Dongyan, ZHU Xiufang, LIU Tingting, ZHANG Shizhe. Changes in meteorological drought characteristics in China under the 2 ℃ temperature rise scenario [J]. Arid Land Geography, 2023, 46(8): 1227-1237. |
[4] | ZHANG Gangdong, BAO Gang, HUANG Xiaojun, YUAN Zhihui, WEN Durina. Asymmetrical warming in winter and spring and its effect on start of growing season and spring NDVI in Mongolia [J]. Arid Land Geography, 2023, 46(8): 1238-1249. |
[5] | TANG Taibin, ZHOU Bao, JIN Xiaomei, WEI Sailajia, MA Tao, ZHANG Yongyan. Change of surface temperature in the source area of the Yellow River in summer [J]. Arid Land Geography, 2023, 46(8): 1250-1259. |
[6] | GUO Min, LI Xinhu, WANG Hongchao, LI Jialin. Effect of salt crust thickness on distribution characteristics of soil water and salt [J]. Arid Land Geography, 2023, 46(8): 1303-1313. |
[7] | KANG Ligang, CAO Shengkui, CAO Guangchao, YAN Li, CHEN Lianxuan, LI Wenbin, ZHAO Haoran. Spatiotemporal variation of land surface temperature in Qinghai Lake Basin [J]. Arid Land Geography, 2023, 46(7): 1084-1097. |
[8] | CHEN Yueping, WU Shengli, ZHAO Xin, ZHANG Yijia. Spatial and temporal variation characteristics of extreme temperatures in Hami City in the past 60 years [J]. Arid Land Geography, 2023, 46(6): 868-879. |
[9] | ZHANG Gangdong, BAO Gang, YUAN Zhihui, WEN Durina. Effects of asymmetric warming of daytime and nighttime on the start of growing season on the Mongolian Plateau from 2001 to 2020 [J]. Arid Land Geography, 2023, 46(5): 700-710. |
[10] | LI Na,WU Yongli,ZHAO Guixiang,QIAN Jinxia,LI Fen,ZHAO Haiying,HAN Pu. Interannual variations of extreme air temperature events and its response to regional warming in Shanxi Province in recent 60 years [J]. Arid Land Geography, 2023, 46(3): 337-348. |
[11] | Gulimire HANATI, JIANG Bo, SU Litan, ZHANG Yin, HU Keke. Simple snowmelt model based on temperature change [J]. Arid Land Geography, 2023, 46(2): 169-177. |
[12] | DENG Tiantian, GENG Guangpo, YANG Rui, ZHANG Bao. Temporal and spatial variation characteristics of high temperature and heat wave in the Weihe River Basin from 1980 to 2020 [J]. Arid Land Geography, 2023, 46(2): 211-221. |
[13] | CAO Yanchao,JIAO Meiling,QIN Tuo,GUO Tong. Variation characteristics and influencing factors of summer half-year precipitation in Hedong region of Gansu Province from 1973 to 2020 [J]. Arid Land Geography, 2022, 45(6): 1695-1706. |
[14] | SHI Wanpeng, LI Bei, LIU Jingtao, ZHUO Zijun, CHEN Xi. Formation characteristics and factors effecting of condensation waterin surface soil in Hoh Xil area [J]. Arid Land Geography, 2022, 45(6): 1729-1739. |
[15] | JU Li, RAN Min, YANG Yunpeng, WANG Xin. Composition characteristics of surface soil δ13Corg in the southwest margin of Tarim Basin [J]. Arid Land Geography, 2022, 45(6): 1805-1813. |
|