Arid Land Geography ›› 2025, Vol. 48 ›› Issue (8): 1353-1362.doi: 10.12118/j.issn.1000-6060.2025.066
• Climatology and Hydrology • Previous Articles Next Articles
Received:2025-02-13
Revised:2025-04-11
Online:2025-08-25
Published:2025-08-21
LI Hui, YAO Xilong. Water-saving potential of hydrogen production from renewable energy in Yellow River Basin from the perspective of water footprint[J].Arid Land Geography, 2025, 48(8): 1353-1362.
Tab. 2
Water scarcity footprint of hydrogen production from renewable energy under different scenarios /106 m3"
| 省(区) | AWARE CF | 光伏制氢 | 风电制氢 |
|---|---|---|---|
| 内蒙古 | 5.896 | 1167.70 | 637.73 |
| 青海 | 23.501 | 62.65 | 34.22 |
| 宁夏 | 0.685 | 3.65 | 1.99 |
| 甘肃 | 3.521 | 46.94 | 25.63 |
| 陕西 | 1.379 | 7.35 | 4.012 |
| 山西 | 2.693 | 36.26 | 19.80 |
| 山东 | 0.531 | 4.71 | 2.57 |
| 河南 | 0.546 | 1.46 | 0.80 |
| 四川 | 1.204 | 0.88 | 0.482 |
| 平均值 | - | 147.96 | 80.80 |
| [1] |
闫晨健, 栗萌, 卓拉, 等. 1989—2019年陕西省作物生产水足迹时空演变与节水潜力评价[J]. 资源科学, 2023, 45(1): 158-173.
doi: 10.18402/resci.2023.01.12 |
|
[Yan Chenjian, Li Meng, Zhuo La, et al. Spatiotemporal evolution of water footprint and water-saving potentials of crop production in Shaanxi Province during 1989—2019[J]. Resources Science, 2023, 45(1): 158-173. ]
doi: 10.18402/resci.2023.01.12 |
|
| [2] | 安慧, 汪永豪, 安敏, 等. 长江经济带沿线城市水资源绿色效率及节水减排潜力时空演变[J]. 长江流域资源与环境, 2023, 32(4): 692-705. |
| [An Hui, Wang Yonghao, An Min, et al. Spatial-temporal evolution of water resources green efficiency and potential of water-saving and emission-abating in cities along Yangtze River economic belt[J]. Resources and Environment in the Yangtze Basin, 2023, 32(4): 692-705. ] | |
| [3] |
王志强, 姜文桓, 卢诗月. 基于生态网络分析的新疆“水-能-碳”耦合系统特征研究[J]. 干旱区地理, 2023, 46(12): 2005-2016.
doi: 10.12118/j.issn.1000-6060.2023.201 |
|
[Wang Zhiqiang, Jiang Wenhuan, Lu Shiyue. Characteristics of “water-energy-carbon” coupling system in Xinjiang based on the ecological network analysis[J]. Arid Land Geography, 2023, 46(12): 2005-2016. ]
doi: 10.12118/j.issn.1000-6060.2023.201 |
|
| [4] | 陈洪波, 杨来. 碳中和目标下中国氢能产业发展的路径选择[J]. 中国人口·资源与环境, 2024, 34(10): 94-105. |
| [Chen Hongbo, Yang Lai. Path selection for China’s hydrogen industry development under the goal of carbon neutrality[J]. China Population, Resources and Environment, 2024, 34(10): 94-105. ] | |
| [5] | 张贤, 许毛, 徐冬, 等. 中国煤制氢CCUS技术改造的碳足迹评估[J]. 中国人口·资源与环境, 2021, 31(12): 1-11. |
| [Zhang Xian, Xu Mao, Xu Dong, et al. Carbon footprint assessment of coal-to-hydrogen technology combined with CCUS in China[J]. China Population, Resources and Environment, 2021, 31(12): 1-11. ] | |
| [6] | 姜克隽, 冯升波. 走向《巴黎协定》温升目标: 已经在路上[J]. 气候变化研究进展, 2021, 17(1): 1-6. |
| [Jiang Kejuan, Feng Shengbo. Going to the mitigation targets in Paris Agreement: The world is on the road[J]. Climate Change Research, 2021, 17(1): 1-6. ] | |
| [7] | Irena B. Water for hydrogen production[R]. United Arab Emirates: International Renewable Energy Agency, Bluerisk, 2023. |
| [8] |
杨燕燕, 王永瑜, 徐绮阳. 黄河流域水资源利用驱动因素及脱钩效应研究[J]. 干旱区地理, 2025, 48(1): 20-30.
doi: 10.12118/j.issn.1000-6060.2024.073 |
|
[Yang Yanyan, Wang Yongyu, Xu Qiyang. Driving factors and decoupling effect of water resources utilization in the Yellow River Basin[J]. Arid Land Geography, 2025, 48(1): 20-30. ]
doi: 10.12118/j.issn.1000-6060.2024.073 |
|
| [9] | Hoekstra A Y, Huang P O. Virtual water trade: A quantification of virtual water flows between nations in relation to international crop trade[J]. Water Science & Technology, 2002, 49(11): 203-209. |
| [10] | 闫书琪, 李素梅, 吕鹤, 等. 基于混合LCA的新疆地区电力生产水足迹分析及碳中和目标下的变化[J]. 气候变化研究进展, 2022, 18(3): 294-304. |
| [Yan Shuqi, Li Sumei, Lü He, et al. Water footprint analysis of electricity production in Xinjiang Uygur Autonomous Region based on a hybrid LCA model and its changes under carbon neutralization target[J]. Climate Change Research, 2022, 18(3): 294-304. ] | |
| [11] |
田嘉欣, 党小虎, 杨志, 等. 水足迹视角下黄土高原经济林果扩张的水安全风险分析——以苹果种植为例[J]. 自然资源学报, 2022, 37(10): 2750-2762.
doi: 10.31497/zrzyxb.20221019 |
|
[Tian Jiaxin, Dang Xiaohu, Yang Zhi, et al. Analysis of water security risk of cash forest expansion in the Loess Plateau in terms of water footprint: A case study of apple planting[J]. Journal of Natural Resources, 2022, 37(10): 2750-2762. ]
doi: 10.31497/zrzyxb.20221019 |
|
| [12] |
高亚苗, 陈浩楠, 王芳, 等. 宁夏典型粮食作物生产水足迹时空演变及节水潜力评价[J]. 干旱区地理, 2024, 47(12): 2005-2016.
doi: 10.12118/j.issn.1000-6060.2024.114 |
|
[Gao Yamiao, Chen Haonan, Wang Fang, et al. Spatio-temporal evolution of water footprint of typical grain crops and evaluation of water-saving potential in Ningxia[J]. Arid Land Geography, 2024, 47(12): 2005-2016. ]
doi: 10.12118/j.issn.1000-6060.2024.114 |
|
| [13] | 武慧君, 刘勇昕, 汪倩倩, 等. 中国燃煤发电水足迹时空特征研究[J]. 生态经济, 2024, 40(5): 164-170. |
| [Wu Huijun, Liu Yongxin, Wang Qianqian, et al. Spatial-temporal characteristics of the water footprint of coal-fired power generation in China[J]. Ecological Economy, 2024, 40(5): 164-170. ] | |
| [14] | 朱永楠, 王建华, 刘合, 等. 西北地区跨区跨省电力交易水足迹时空演变特征解析[J]. 水电能源科学, 2021, 39(11): 69-71, 162. |
| [Zhu Yongnan, Wang Jianhua, Liu He, et al. Analysis of spatial and temporal evolution of water footprint of interregional and inter-provincial electricity trading in northwest China[J]. Water Resources and Power, 2021, 39(11): 69-71, 162. ] | |
| [15] | Henriksen M S, Matthews H S, White J, et al. Tradeoffs in life cycle water use and greenhouse gas emissions of hydrogen production pathways[J]. International Journal of Hydrogen Energy, 2024, 49: 1221-1234. |
| [16] |
关伟, 赵湘宁, 许淑婷. 中国能源水足迹时空特征及其与水资源匹配关系[J]. 资源科学, 2019, 41(11): 2008-2019.
doi: 10.18402/resci.2019.11.05 |
|
[Guan Wei, Zhao Xiangning, Xu Shuting. Spatiotemporal feature of the water footprint of energy and its relationship with water resources in China[J]. Resources Science, 2019, 41(11): 2008-2019. ]
doi: 10.18402/resci.2019.11.05 |
|
| [17] | Yang Q, Huang T Y, Chen F Y, et al. Water saving potential for large-scale photovoltaic power generation in China: Based on life cycle assessment[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112681, doi: 10.1016/j.rser.2022.112681. |
| [18] | Shi X P, Liao X, Li Y F. Quantification of fresh water consumption and scarcity footprints of hydrogen from water electrolysis: A methodology framework[J]. Renewable Energy, 2020, 154: 786-796. |
| [19] | Ma C, Liu W W, Gou H X, et al. Water conservation potential of energy-intensive industries under clean energy and electricity substitution: A case study of nine provinces along the Yellow River Basin[J]. Journal of Environmental Management, 2024, 371: 123 256, doi: 10.1016/j.jenvman.2024.123256. |
| [20] | Liao X W, Zhao X, Liu W F, et al. Comparing water footprint and water scarcity footprint of energy demand in China’s six megacities[J]. Applied Energy, 2020, 269: 115137, doi: 10.1016/j.apenergy.2020.115137. |
| [21] | Li J J, Yan Y L, Wang Y R, et al. Spatial-successive transfer of virtual scarcity water along China’s coal-based electric chain[J]. Energy, 2024, 288: 129678, doi: 10.1016/j.energy.2023.129678. |
| [22] | 陆中桂, 康哲, 李巍, 等. 水量-水质-生态需水综合视角下黄河流域水稀缺评估[J]. 水资源保护, 2024, 40(4): 73-81. |
| [Lu Zhonggui, Kang Zhe, Li Wei, et al. Water scarcity assessment in the Yellow River Basin from comprehensive perspective of water quantity-water quality-ecology water demand[J]. Water Resources Protection, 2024, 40(4): 73-81. ] | |
| [23] |
房德琳, 宋长青, 黎成航, 等. 基于省际虚拟水流动的水资源压力及驱动因素[J]. 地理学报, 2025, 80(3): 712-723.
doi: 10.11821/dlxb202503009 |
|
[Fang Delin, Song Changqing, Li Chenghang, et al. Analysis of water stress and driving factors based on virtual water flows in China[J]. Acta Geographica Sinica, 2025, 80(3): 712-723. ]
doi: 10.11821/dlxb202503009 |
|
| [24] | 赵勇, 黄可静, 高学睿, 等. 黄河流域粮食生产水足迹及虚拟水流动影响评价[J]. 水资源保护, 2022, 38(4): 39-47. |
| [Zhao Yong, Huang Kejing, Gao Xuerui, et al. Evaluation of grain production water footprint and influence of grain virtual water flow in the Yellow River Basin[J]. Water Resources Protection, 2022, 38(4): 39-47. ] | |
| [25] |
石常峰, 俞越, 吴凤平, 等. 近远程耦合视角下黄河流域产业虚拟水流动与水资源短缺风险传递[J]. 自然资源学报, 2024, 39(1): 228-244.
doi: 10.31497/zrzyxb.20240113 |
|
[Shi Changfeng, Yu Yue, Wu Fengping, et al. Exploring virtual water flows and water resources risk transfer in the Yellow River Basin based on local-distant perspective[J]. Journal of Natural Resources, 2024, 39(1): 228-244. ]
doi: 10.31497/zrzyxb.20240113 |
|
| [26] | 张浩然, 徐康宁, 郭飞, 等. 基于水资源生态足迹的黄河流域水资源可持续利用研究[J]. 环境工程技术学报, 2024, 14(6): 1732-1742. |
| [Zhang Haoran, Xu Kangning, Guo Fei, et al. Research on the sustainable utilization of water resources in the Yellow River Basin based on water resources ecological footprint[J]. Journal of Environmental Engineering Technology, 2024, 14(6): 1732-1742. ] | |
| [27] |
杜娅明, 白永平, 梁建设, 等. 黄河流域旅游业碳排放效率综合测度及影响因素研究[J]. 干旱区地理, 2023, 46(12): 2074-2085.
doi: 10.12118/j.issn.1000-6060.2023.193 |
|
[Du Yaming, Bai Yongping, Liang Jianshe, et al. Comprehensive measurement and influencing factors of carbon emission efficiency of tourism in the Yellow River Basin[J]. Arid Land Geography, 2023, 46(12): 2074-2085. ]
doi: 10.12118/j.issn.1000-6060.2023.193 |
|
| [28] | 侯林秀, 温璐, 赵吉, 等. 基于水足迹法的阿拉善地区水资源利用评价与分析[J]. 干旱区资源与环境, 2020, 34(12): 35-41. |
| [Hou Linxiu, Wen Lu, Zhao Ji, et al. Evaluation of water resource utilization in Alxa League based on water foot-print method[J]. Journal of Arid Land Resources and Environment, 2020, 34(12): 35-41. ] | |
| [29] | Du L F, Yang Y M, Bai X, et al. Water scarcity footprint and water saving potential for large-scale green hydrogen generation: Evidence from coal-to-hydrogen substitution in China[J]. Science of the Total Environment, 2024, 940: 173589, doi: 10.1016/j.scitotenv.2024.173589. |
| [30] | 杨周义, 邢海军, 江伟建, 等. 基于低碳需求响应的含煤制氢与碳捕集电厂的综合能源系统优化调度[J]. 电力自动化设备, 2024, 44(4): 25-32. |
| [Yang Zhouyi, Xing Haijun, Jiang Jianwei, et al. Optimal scheduling of integrated energy system with coal-to-hydrogen and carboncapture power plant based on low-carbon demand response[J]. Electric Power Automation Equipment, 2024, 44(4): 25-32. ] | |
| [31] | Chen Q Y, An T L, Lu S B, et al. The water footprint of coal-fired electricity production and the virtual water flows associated with coal and electricity transportation in China[J]. Energy Procedia, 2019, 158: 3519-3527. |
| [32] | Li G, Ma S Q, Liu F, et al. Life cycle water footprint assessment of syngas production from biomass chemical looping gasification[J]. Bioresource Technology, 2021, 342: 125940, doi: 10.1016/j.bio-rtech.2021.125940. |
| [33] | Cui P Z, Xu Z F, Yao D, et al. Life cycle water footprint and carbon footprint analysis of municipal sludge plasma gasification process[J]. Energy, 2022, 261: 125280, doi: 10.1016/j.energy.2022.125280. |
| [34] | Pfister S, Scherer L, Buxmann K. Water scarcity footprint of hydropower based on a seasonal approach: Global assessment with sensitivities of model assumptions tested on specific cases[J]. Science of the Total Environment, 2020, 724: 138188, doi: 10.1016/j.scitotenv.2020.138188. |
|
||

