Arid Land Geography ›› 2024, Vol. 47 ›› Issue (2): 214-227.doi: 10.12118/j.issn.1000-6060.2023.070
• Climatology and Hydrology • Previous Articles Next Articles
REN Zijian1,2(), WANG Jianglin1(), XU Henian1,2, QIN Chun1
Received:
2023-02-21
Revised:
2023-04-12
Online:
2024-02-25
Published:
2024-03-14
Contact:
WANG Jianglin
E-mail:renzijian21@mails.ucas.ac.cn;wangjianglin2011@lzb.ac.cn
REN Zijian, WANG Jianglin, XU Henian, QIN Chun. Evolution and driving factors of megadrought and pluvial events in the Qilian Mountains during the past 500 years[J].Arid Land Geography, 2024, 47(2): 214-227.
Tab. 1
Information of three hydroclimate reconstruction datasets"
数据集信息 | RAP | MADA | IGGPRE |
---|---|---|---|
来源 | Shi等[ | Cook等[ | Shi等[ |
时间 | 1470—2013年 | 1300—2005年 | 1470—2000年 |
季节 | 6—8月 | 6—8月 | 5—9月 |
分辨率 | 2.0°×2.0° | 2.5°×2.5° | 0.5°×0.5° |
代用指标 | 453个树轮年表71条DWI | 327个树轮年表 | 372个树轮年表107条DWI |
方法 | DWI的水平变换与外推,树木年轮的PPR | PPR | PPR |
范围 | 9.75°~56.25°N 60.25°~144.25°E | 10.00°~57.50°N 60.00°~145.00°E | 18.00°~54.00°N 72.00°~136.00°E |
Tab. 4
Comparison of megadrought and pluvial events in the three datasets over the past several centuries"
旱涝事件 | RAP | IGGPRE | MADA |
---|---|---|---|
年代际干 旱事件 | 1 1475—1500(26) | 1475—1502(28) | 1475—1500(26) |
2 1582—1591(10) | - | 1585—1602(18) | |
3 1622—1631(10) | - | - | |
4 1634—1655(22) | 1645—1659(15) | 1645—1655(11) | |
5 1683—1703(21) | 1685—1730(46) 1685—1730(46) | - | |
6 1706—1725(20) | 1709—1719(11) | ||
7 1786—1796(11) | 1788—1799(12) | - | |
- | - | 1919—1933(15) | |
年代际湿 润事件 | - | - | 1526—1553(28) |
1 1560—1579(20) | 1560—1583(24) | - | |
- | - | 1607—1621(15) | |
- | - | 1798—1812(15) | |
2 1898—1910(13) | 1887—1912(26) | - | |
3 1938—1951(14) | 1940—1952(13) | - | |
4 1968—2009(42) | 1966—1996(31) | 1978—1992(15) |
[1] | Cook E R, Seager R, Cane M A, et al. North American drought: Reconstructions, causes, and consequences[J]. Earthence Reviews, 2007, 81(1-2): 93-134. |
[2] | Ionita M, Dima M, Nagavciuc V, et al. Past megadroughts in central Europe were longer, more severe and less warm than modern droughts[J]. Communications Earth & Environment, 2021, 2(1): 61, doi: 10.1038/s43247-021-00130-w. |
[3] |
Bryson R A, Swain A M. Holocene variations of monsoon rainfall in Rajasthan[J]. Quaternary Research, 1981, 16(2): 135-145.
doi: 10.1016/0033-5894(81)90041-7 |
[4] |
Kennett D J, Breitenbach S F M, Aquino V V, et al. Development and disintegration of Maya political systems in response to climate change[J]. Science, 2012, 338(6108): 788-791.
doi: 10.1126/science.1226299 pmid: 23139330 |
[5] | Lu E, Luo Y, Zhang R, et al. Regional atmospheric anomalies responsible for the 2009—2010 severe drought in China[J]. Journal of Geophysical Research Atmospheres, 2011, 116: D21114, doi: 10.1029/2011JD015706. |
[6] | Viste E, Korecha D, Sorteberg A. Recent drought and precipitation tendencies in Ethiopia[J]. Theoretical & Applied Climatology, 2013, 112(3): 535-551. |
[7] |
Cook B I, Cook E R, Smerdon J E, et al. North American megadroughts in the Common Era: Reconstructions and simulations[J]. Wiley Interdisciplinary Reviews-Climate Change, 2016, 7(3): 411-432.
doi: 10.1002/wcc.2016.7.issue-3 |
[8] |
Cook E R, Woodhouse C A, Eakin C M, et al. Long-term aridity changes in the western United States[J]. Science, 2004, 306(5698): 1015-1018.
pmid: 15472040 |
[9] |
Seager R, Ting M F. Decadal drought variability over North America: Mechanisms and predictability[J]. Current Climate Change Reports, 2017, 3(2): 141-149.
doi: 10.1007/s40641-017-0062-1 |
[10] |
Ma Z G, Fu C B. Some evidence of drying trend over northern China from 1951 to 2004[J]. Chinese Science Bulletin, 2006, 51(23): 2913-2925.
doi: 10.1007/s11434-006-2159-0 |
[11] | Qin Y M, Ning L, Li L H, et al. Assessing the modern multi-decadal scale aridification over the northern China from a historical perspective[J]. Journal of Geophysical Research-Atmospheres, 2022, 127(3): e2021JD035622, doi: 10.1029/2021JD035622. |
[12] |
Ning L, Bradley R S. Winter climate extremes over the northeastern United States and southeastern Canada and teleconnections with large-scale modes of climate variability[J]. Journal of Climate, 2015, 28(6): 2475-2493.
doi: 10.1175/JCLI-D-13-00750.1 |
[13] |
Ning L, Qian Y F. Interdecadal change in extreme precipitation over south China and its mechanism[J]. Advances in Atmospheric Sciences, 2009, 26(1): 109-118.
doi: 10.1007/s00376-009-0109-x |
[14] |
Seager R, Graham N, Herweijer C, et al. Blueprints for Medieval hydroclimate[J]. Quaternary Science Reviews, 2007, 26(19-21): 2322-2336.
doi: 10.1016/j.quascirev.2007.04.020 |
[15] |
Zhang L X, Zhou T J. Drought over east Asia: A review[J]. Journal of Climate, 2015, 28(8): 3375-3399.
doi: 10.1175/JCLI-D-14-00259.1 |
[16] |
Qian C, Zhou T J. Multidecadal variability of north China aridity and its relationship to PDO during 1900—2010[J]. Journal of Climate, 2014, 27(3): 1210-1222.
doi: 10.1175/JCLI-D-13-00235.1 |
[17] |
Wang X J, Pang G J, Yang M X, et al. Precipitation changes in the Qilian Mountains associated with the shifts of regional atmospheric water vapour during 1960—2014[J]. International Journal of Climatology, 2018, 38(12): 4355-4368.
doi: 10.1002/joc.2018.38.issue-12 |
[18] |
张文杰, 程维明, 李宝林, 等. 气候变化下的祁连山地区近40年多年冻土分布变化模拟[J]. 地理研究, 2014, 33(7): 1275-1284.
doi: 10.11821/dlyj201407008 |
[ Zhang Wenjie, Cheng Weiming, Li Baolin, et al. Simulation of the permafrost distribution on Qilian Mountains over past 40 years under the influence of climate change[J]. Geographical Research, 2014, 33(7): 1275-1284. ]
doi: 10.11821/dlyj201407008 |
|
[19] |
刘兰娅, 勾晓华, 张芬, 等. 升温对祁连山东部青海云杉径向生长的影响[J]. 应用生态学报, 2021, 32(10): 3576-3584.
doi: 10.13287/j.1001-9332.202110.019 |
[ Liu Lanya, Gou Xiaohua, Zhang Fen, et al. Effects of warming on radial growth of Picea crassifolia in the eastern Qilian Mountains, China[J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3576-3584. ]
doi: 10.13287/j.1001-9332.202110.019 |
|
[20] |
Luo L H, Ma W, Zhuang Y L, et al. The impacts of climate change and human activities on alpine vegetation and permafrost in the Qinghai-Tibet engineering corridor[J]. Ecological Indicators, 2019, 93: 24-35.
doi: 10.1016/j.ecolind.2018.04.067 |
[21] | 晋子振, 秦翔, 赵求东, 等. 祁连山西段老虎沟流域消融季径流变化特征研究[J]. 干旱区地理, 2023, 46(2):178-190. |
[ Jin Zizhen, Qin Xiang, Zhao Qiudong, et al. Characteristics of runoff variation during ablation season in Laohugou watershed of western Qilian Mountains[J]. Arid Land Geography, 2023, 46(2): 178-190. ] | |
[22] | 杨金虎, 江志红, 王鹏祥, 等. 中国年极端降水事件的时空分布特征[J]. 气候与环境研究, 2018, 51(1): 75-83. |
[ Yang Jinhu, Jiang Zhihong, Wang Pengxiang, et al. Temporal and spatial characteristic of extreme precipitation event in China[J]. Climatic and Environmental Research, 2018, 51(1): 75-83. ] | |
[23] | 程鹏, 孔祥伟, 罗汉, 等. 近60 a以来祁连山中部气候变化及其径流响应研究[J]. 干旱区地理, 2020, 43(5): 1192-1201. |
[ Cheng Peng, Kong Xiangwei, Luo Han, et al. Climate change and its runoff response in the middle section of the Qilian Mountains in the past 60 years[J]. Arid Land Geography, 2020, 43(5): 1192-1201. ] | |
[24] |
Zhang Y, Shao X M, Yin Z Y, et al. Characteristics of extreme droughts inferred from tree-ring data in the Qilian Mountains, 1700—2005[J]. Climate Research, 2011, 50(2-3): 141-159.
doi: 10.3354/cr01051 |
[25] |
Gou X H, Gao L L, Deng Y, et al. An 850-year tree-ring-based reconstruction of drought history in the western Qilian Mountains of northwestern China[J]. International Journal of Climatology, 2015, 35(11): 3308-3319.
doi: 10.1002/joc.2015.35.issue-11 |
[26] |
Yang B, Qin C, Wang J L, et al. A 3500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(8): 2903-2908.
doi: 10.1073/pnas.1319238111 pmid: 24516152 |
[27] |
Gou X H, Deng Y, Gao L L, et al. Millennium tree-ring reconstruction of drought variability in the eastern Qilian Mountains, northwest China[J]. Climate Dynamics, 2015, 45(7-8): 1761-1770.
doi: 10.1007/s00382-014-2431-y |
[28] |
Yang B, Kang S Y, Ljungqvist F C, et al. Drought variability at the northern fringe of the Asian summer monsoon region over the past millennia[J]. Climate Dynamics, 2014, 43(3-4): 845-859.
doi: 10.1007/s00382-013-1962-y |
[29] | 施雅风, 沈永平, 胡汝骥. 西北气候由暖干向暖湿转型的信号、影响和前景初步探讨[J]. 冰川冻土, 2002, 24(3): 219-226. |
[ Shi Yafeng, Shen Yongping, Hu Ruji. Preliminary study on signal, impact and foreground of climatic shift from warm-dry to warm-humid in northwest China[J]. Journal of Glaciology and Geocryology, 2002, 24(3): 219-226. ] | |
[30] |
丁一汇, 柳艳菊, 徐影, 等. 全球气候变化的区域响应: 中国西北地区气候“暖湿化”趋势、成因及预估研究进展与展望[J]. 地球科学进展, 2023, 38(6): 551-562.
doi: 10.11867/j.issn.1001-8166.2023.027 |
[ Ding Yihui, Liu Yanju, Xu Ying, et al. Regional responses to global climate change: Progress and prospects for trend, causes, and projection of climatic warming-wetting in northwest China[J]. Advances in Earth Science, 2023, 38(6): 551-562. ]
doi: 10.11867/j.issn.1001-8166.2023.027 |
|
[31] |
Shi H, Wang B, Cook E R, et al. Asian summer precipitation over the past 544 years reconstructed by merging tree rings and historical documentary records[J]. Journal of Climate, 2018, 31(19): 7845-7861.
doi: 10.1175/JCLI-D-18-0003.1 |
[32] |
Cook E R, Anchukaitis K J, Buckley B M, et al. Asian monsoon failure and megadrought during the Last Millennium[J]. Science, 2010, 328(5977): 486-489.
doi: 10.1126/science.1185188 pmid: 20413498 |
[33] |
Shi F, Zhao S, Guo Z T, et al. Multi-proxy reconstructions of May-September precipitation field in China over the past 500 years[J]. Climate of the Past, 2017, 13(12): 1919-1938.
doi: 10.5194/cp-13-1919-2017 |
[34] |
Liu Y, Zheng J Y, Hao Z X, et al. A dataset of standard precipitation index reconstructed from multi-proxies over Asia for the past 300 years[J]. Earth System Science Data, 2022, 14(12): 5717-5735.
doi: 10.5194/essd-14-5717-2022 |
[35] |
Feng S, Hu Q, Wu Q R, et al. A gridded reconstruction of warm season precipitation for Asia spanning the Past Half Millennium[J]. Journal of Climate, 2013, 26(7): 2192-2204.
doi: 10.1175/JCLI-D-12-00099.1 |
[36] | Liu Y, Hao Z X, Zhang X Z, et al. Intercomparisons of multiproxy-based gridded precipitation datasets in monsoon Asia: Cross-validation and spatial patterns with different phase combinations of multidecadal oscillations[J]. Climatic Change, 2021, 165(1-2): 31, doi: 10.1007/s10584-021-03072-6. |
[37] |
Lean J L. Estimating solar irradiance since 850 CE[J]. Earth and Space Science, 2018, 5(4): 133-149.
doi: 10.1002/ess2.v5.4 |
[38] |
Crowley T J. Causes of climate change over the past 1000 years[J]. Science, 2000, 289(5477): 270-277.
pmid: 10894770 |
[39] | Macdonald G M, Case R A. Variations in the Pacific Decadal Oscillation over the past millennium[J]. Geophysical Research Letters, 2005, 32(8): L08703, doi: 10.1029/2005GL022478. |
[40] |
Wang J L, Yang B, Ljungqvist F C, et al. Internal and external forcing of multidecadal Atlantic climate variability over the past 1200 years[J]. Nature Geoscience, 2017, 10(7): 512-517.
doi: 10.1038/ngeo2962 |
[41] |
Ault T R, George S S, Smerdon J E, et al. A robust null hypothesis for the potential causes of megadrought in western north America[J]. Journal of Climate, 2018, 31(1): 3-24.
doi: 10.1175/JCLI-D-17-0154.1 |
[42] |
Stevenson S, Overpeck J T, Fasullo J, et al. Climate variability, volcanic forcing, and Last Millennium hydroclimate extremes[J]. Journal of Climate, 2018, 31(11): 4309-4327.
doi: 10.1175/JCLI-D-17-0407.1 |
[43] | 刘旻霞, 焦骄, 潘竟虎, 等. 青海省植被净初级生产力(NPP)时空格局变化及其驱动因素[J]. 生态学报, 2020, 40(15): 5306-5317. |
[ Liu Minxia, Jiao Jiao, Pan Jinghu, et al. Spatial and temporal patterns of planting NPP and its driving factors in Qinghai Province[J]. Acta Ecologica Sinica, 2020, 40(15): 5306-5317. ] | |
[44] | 徐勇, 戴强玉, 黄雯婷, 等. 2000—2020年西南地区植被NDVI时空变化及驱动机制探究[J]. 环境科学, 2023, 44(1): 323-335. |
[ Xu Yong, Dai Qiangyu, Huang Wenting, et al. Spatio-temporal variation in vegetation cover and its driving mechanism exploration in southwest China from 2000 to 2020[J]. Environment Science, 2023, 44(1): 323-335. ]
doi: 10.1021/es902899n |
|
[45] | 苏玥, 张存厚, 阿木尔萨那, 等. 1981—2018年内蒙古典型草原季节性冻土对气候变化的响应[J]. 干旱区地理, 2022, 45(3): 684-694. |
[ Su Yue, Zhang Cunhou, Amuersana, et al. Response of seasonal frozen soil to climate change on a typical steppe of Inner Mongolia during 1981—2018[J]. Arid Land Geography, 2022, 45(3): 684-694. ] | |
[46] |
王有恒, 李丹华, 卢国阳, 等. 祁连山气候变化特征及其对水资源的影响[J]. 应用生态学报, 2022, 33(10): 2805-2812.
doi: 10.13287/j.1001-9332.202210.024 |
[ Wang Youheng, Li Danhua, Lu Guoyang, et al. Characteristics of climate change and its impact on water resources in Qilian Mountains, China[J]. Chinese Journal of Applied Ecology, 2022, 33(10): 2805-2812. ]
doi: 10.13287/j.1001-9332.202210.024 |
|
[47] |
Tian Q H, Zhou X J, Gou X H, et al. Analysis of reconstructed annual precipitation from tree-rings for the past 500 years in the middle Qilian Mountain[J]. Science China-Earth Sciences, 2012, 55(5): 770-778.
doi: 10.1007/s11430-012-4375-6 |
[48] |
Sun J Y, Liu Y. Drought variations in the middle Qilian Mountains, northeast Tibetan Plateau, over the last 450 years as reconstructed from tree rings[J]. Dendrochronologia, 2013, 31(4): 279-285.
doi: 10.1016/j.dendro.2012.07.004 |
[49] | 刘芸芸, 张雪芹. 西北干旱区空中水资源的时空变化特征及其原因分析[J]. 气候变化研究进展, 2011, 7(6): 385-392. |
[ Liu Yunyun, Zhang Xueqin. Variations of atmospheric water resources over the arid region of northwest China and its causes[J]. Advances in Climate Change Research, 2011, 7(6): 385-392. ] | |
[50] |
Liu J A, Wang B, Wang H L, et al. Forced response of the East Asian summer rainfall over the past millennium: Results from a coupled model simulation[J]. Climate Dynamics, 2011, 36(1-2): 323-336.
doi: 10.1007/s00382-009-0693-6 |
[51] |
Zhou T J, Li B, Man W M, et al. A comparison of the Medieval Warm Period, Little Ice Age and 20th century warming simulated by the FGOALS climate system model[J]. Chinese Science Bulletin, 2011, 56(28-29): 3028-3041.
doi: 10.1007/s11434-011-4641-6 |
[52] |
Chen F H, Chen J H, Huang W, et al. Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales[J]. Earth-Science Reviews, 2019, 192: 337-354.
doi: 10.1016/j.earscirev.2019.03.005 |
[53] |
Jin L Y, Chen F H, Morrill C, et al. Causes of early Holocene desertification in arid central Asia[J]. Climate Dynamics, 2012, 38(7-8): 1577-1591.
doi: 10.1007/s00382-011-1086-1 |
[54] |
Zhang Y, Tian Q H, Gou X H, et al. Annual precipitation reconstruction since AD 775 based on tree rings from the Qilian Mountains, northwestern China[J]. International Journal of Climatology, 2011, 31(3): 371-381.
doi: 10.1002/joc.v31.3 |
[55] |
Shen C, Wang W C, Hao Z, et al. Exceptional drought events over eastern China during the last five centuries[J]. Climatic Change, 2007, 85(3-4): 453-471.
doi: 10.1007/s10584-007-9283-y |
[56] |
Man W M, Zhou T J, Jungclaus J H. Effects of large volcanic eruptions on global summer climate and East Asian Monsoon changes during the Last Millennium: Analysis of MPI-ESM simulations[J]. Journal of Climate, 2014, 27(19): 7394-7409.
doi: 10.1175/JCLI-D-13-00739.1 |
[57] |
Iles C E, Hegerl G C, Schurer A P, et al. The effect of volcanic eruptions on global precipitation[J]. Journal of Geophysical Research-Atmospheres, 2013, 118(16): 8770-8786.
doi: 10.1002/jgrd.v118.16 |
[58] |
Zhuo Z H, Gao C C, Pan Y Q. Proxy evidence for China’s monsoon precipitation response to volcanic aerosols over the past seven centuries[J]. Journal of Geophysical Research-Atmospheres, 2014, 119(11): 6638-6652.
doi: 10.1002/jgrd.v119.11 |
[59] | Hernandez A, Martin-Puertas C, Moffa-Sanchez P, et al. Modes of climate variability: Synthesis and review of proxy-based reconstructions through the Holocene[J]. Earth-Science Reviews, 2020, 209: 103286, doi: 10.1016/j.earscirev.2020.103286. |
[60] |
Fang K Y, Chen D L, Ilvonen L, et al. Oceanic and atmospheric modes in the Pacific and Atlantic Oceans since the Little Ice Age (LIA): Towards a synthesis[J]. Quaternary Science Reviews, 2019, 215: 293-307.
doi: 10.1016/j.quascirev.2019.05.014 |
[61] |
Si D, Ding Y H. Oceanic forcings of the interdecadal variability in East Asian summer rainfall[J]. Journal of Climate, 2016, 29(21): 7633-7649.
doi: 10.1175/JCLI-D-15-0792.1 |
[62] |
Mccarthy G D, Haigh I D, Hirschi J J M, et al. Ocean impact on decadal Atlantic climate variability revealed by sea-level observations[J]. Nature, 2015, 521(7553): 508-510.
doi: 10.1038/nature14491 |
[63] |
Liu Y W, Chiang J C H, Chou C, et al. Atmospheric teleconnection mechanisms of extratropical North Atlantic SST influence on Sahel rainfall[J]. Climate Dynamics, 2014, 43(9-10): 2797-2811.
doi: 10.1007/s00382-014-2094-8 |
[64] | 丁一汇, 李怡, 王遵娅, 等. 亚非夏季风的年代际变化: 大西洋多年代际振荡与太平洋年代际振荡的协同作用[J]. 大气科学学报, 2020, 43(1): 20-32. |
[ Ding Yihui, Li Yi, Wang Zunya, et al. Interdecadal variation of Afro-Asian summer monsoon: Coordinated effects of AMO and PDO oceanic modes[J]. Transactions of Atmospheric Sciences, 2020, 43(1): 20-32. ] | |
[65] | 朱益民, 杨修群. 太平洋年代际振荡与中国气候变率的联系[J]. 气象学报, 2003, 61(6): 641-654. |
[ Zhu Yimin, Yang Xiuqun. Relationships between Pacific Decadal Oscillation (PDO) and climate variabilities in China[J]. Acta Meteorologica Sinica, 2003, 61(6): 641-654. ] | |
[66] | 程乘, 朱益民, 丁黄兴, 等. 中国东部地区夏季降水和环流的年代际转型及其与PDO的联系[J]. 气象科学, 2017, 37(4): 450-457. |
[ Chen Cheng, Zhu Yimin, Ding Huangxing, et al. The interdecadal shift of summer precipitation and atmospheric circulation over east China and its relationship with PDO[J]. Journal of the Meteorological Sciences, 2017, 37(4): 450-457. ] | |
[67] | 贾艳青, 张勃. 近57年中国北方气候干湿变化及与太平洋年代际振荡的关系[J]. 土壤学报, 2019, 56(5): 1085-1097. |
[ Jia Yanqing, Zhang Bo. Relationship of dry-wet climate changes in northern China in the past 57 years with Pacific Decadal Oscillation (PDO)[J]. Acta Pedologica Sinica, 2019, 56(5): 1085-1097. ] | |
[68] | Wang S S, Huang J P, Huang G, et al. Enhanced impacts of Indian Ocean Sea surface temperature on the dry/wet variations over northwest China[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(11): e2022JD036533, doi: 10.1029/2022JD036533. |
[69] |
Peng D D, Zhou T J. Why was the arid and semiarid northwest China getting wetter in the recent decades?[J]. Journal of Geophysical Research-Atmospheres, 2017, 122(17): 9060-9075.
doi: 10.1002/jgrd.v122.17 |
[70] |
Treydte K S, Schleser G H, Helle G, et al. The twentieth century was the wettest period in northern Pakistan over the past millennium[J]. Nature, 2006, 440(7088): 1179-1182.
doi: 10.1038/nature04743 |
|