Arid Land Geography ›› 2024, Vol. 47 ›› Issue (2): 214-227.doi: 10.12118/j.issn.1000-6060.2023.070
• Climatology and Hydrology • Previous Articles Next Articles
REN Zijian1,2(), WANG Jianglin1(
), XU Henian1,2, QIN Chun1
Received:
2023-02-21
Revised:
2023-04-12
Online:
2024-02-25
Published:
2024-03-14
Contact:
WANG Jianglin
E-mail:renzijian21@mails.ucas.ac.cn;wangjianglin2011@lzb.ac.cn
REN Zijian, WANG Jianglin, XU Henian, QIN Chun. Evolution and driving factors of megadrought and pluvial events in the Qilian Mountains during the past 500 years[J].Arid Land Geography, 2024, 47(2): 214-227.
Tab. 1
Information of three hydroclimate reconstruction datasets"
数据集信息 | RAP | MADA | IGGPRE |
---|---|---|---|
来源 | Shi等[ | Cook等[ | Shi等[ |
时间 | 1470—2013年 | 1300—2005年 | 1470—2000年 |
季节 | 6—8月 | 6—8月 | 5—9月 |
分辨率 | 2.0°×2.0° | 2.5°×2.5° | 0.5°×0.5° |
代用指标 | 453个树轮年表71条DWI | 327个树轮年表 | 372个树轮年表107条DWI |
方法 | DWI的水平变换与外推,树木年轮的PPR | PPR | PPR |
范围 | 9.75°~56.25°N 60.25°~144.25°E | 10.00°~57.50°N 60.00°~145.00°E | 18.00°~54.00°N 72.00°~136.00°E |
Tab. 4
Comparison of megadrought and pluvial events in the three datasets over the past several centuries"
旱涝事件 | RAP | IGGPRE | MADA |
---|---|---|---|
年代际干 旱事件 | 1 1475—1500(26) | 1475—1502(28) | 1475—1500(26) |
2 1582—1591(10) | - | 1585—1602(18) | |
3 1622—1631(10) | - | - | |
4 1634—1655(22) | 1645—1659(15) | 1645—1655(11) | |
5 1683—1703(21) | 1685—1730(46) 1685—1730(46) | - | |
6 1706—1725(20) | 1709—1719(11) | ||
7 1786—1796(11) | 1788—1799(12) | - | |
- | - | 1919—1933(15) | |
年代际湿 润事件 | - | - | 1526—1553(28) |
1 1560—1579(20) | 1560—1583(24) | - | |
- | - | 1607—1621(15) | |
- | - | 1798—1812(15) | |
2 1898—1910(13) | 1887—1912(26) | - | |
3 1938—1951(14) | 1940—1952(13) | - | |
4 1968—2009(42) | 1966—1996(31) | 1978—1992(15) |
[1] | Cook E R, Seager R, Cane M A, et al. North American drought: Reconstructions, causes, and consequences[J]. Earthence Reviews, 2007, 81(1-2): 93-134. |
[2] | Ionita M, Dima M, Nagavciuc V, et al. Past megadroughts in central Europe were longer, more severe and less warm than modern droughts[J]. Communications Earth & Environment, 2021, 2(1): 61, doi: 10.1038/s43247-021-00130-w. |
[3] |
Bryson R A, Swain A M. Holocene variations of monsoon rainfall in Rajasthan[J]. Quaternary Research, 1981, 16(2): 135-145.
doi: 10.1016/0033-5894(81)90041-7 |
[4] |
Kennett D J, Breitenbach S F M, Aquino V V, et al. Development and disintegration of Maya political systems in response to climate change[J]. Science, 2012, 338(6108): 788-791.
doi: 10.1126/science.1226299 pmid: 23139330 |
[5] | Lu E, Luo Y, Zhang R, et al. Regional atmospheric anomalies responsible for the 2009—2010 severe drought in China[J]. Journal of Geophysical Research Atmospheres, 2011, 116: D21114, doi: 10.1029/2011JD015706. |
[6] | Viste E, Korecha D, Sorteberg A. Recent drought and precipitation tendencies in Ethiopia[J]. Theoretical & Applied Climatology, 2013, 112(3): 535-551. |
[7] |
Cook B I, Cook E R, Smerdon J E, et al. North American megadroughts in the Common Era: Reconstructions and simulations[J]. Wiley Interdisciplinary Reviews-Climate Change, 2016, 7(3): 411-432.
doi: 10.1002/wcc.2016.7.issue-3 |
[8] |
Cook E R, Woodhouse C A, Eakin C M, et al. Long-term aridity changes in the western United States[J]. Science, 2004, 306(5698): 1015-1018.
pmid: 15472040 |
[9] |
Seager R, Ting M F. Decadal drought variability over North America: Mechanisms and predictability[J]. Current Climate Change Reports, 2017, 3(2): 141-149.
doi: 10.1007/s40641-017-0062-1 |
[10] |
Ma Z G, Fu C B. Some evidence of drying trend over northern China from 1951 to 2004[J]. Chinese Science Bulletin, 2006, 51(23): 2913-2925.
doi: 10.1007/s11434-006-2159-0 |
[11] | Qin Y M, Ning L, Li L H, et al. Assessing the modern multi-decadal scale aridification over the northern China from a historical perspective[J]. Journal of Geophysical Research-Atmospheres, 2022, 127(3): e2021JD035622, doi: 10.1029/2021JD035622. |
[12] |
Ning L, Bradley R S. Winter climate extremes over the northeastern United States and southeastern Canada and teleconnections with large-scale modes of climate variability[J]. Journal of Climate, 2015, 28(6): 2475-2493.
doi: 10.1175/JCLI-D-13-00750.1 |
[13] |
Ning L, Qian Y F. Interdecadal change in extreme precipitation over south China and its mechanism[J]. Advances in Atmospheric Sciences, 2009, 26(1): 109-118.
doi: 10.1007/s00376-009-0109-x |
[14] |
Seager R, Graham N, Herweijer C, et al. Blueprints for Medieval hydroclimate[J]. Quaternary Science Reviews, 2007, 26(19-21): 2322-2336.
doi: 10.1016/j.quascirev.2007.04.020 |
[15] |
Zhang L X, Zhou T J. Drought over east Asia: A review[J]. Journal of Climate, 2015, 28(8): 3375-3399.
doi: 10.1175/JCLI-D-14-00259.1 |
[16] |
Qian C, Zhou T J. Multidecadal variability of north China aridity and its relationship to PDO during 1900—2010[J]. Journal of Climate, 2014, 27(3): 1210-1222.
doi: 10.1175/JCLI-D-13-00235.1 |
[17] |
Wang X J, Pang G J, Yang M X, et al. Precipitation changes in the Qilian Mountains associated with the shifts of regional atmospheric water vapour during 1960—2014[J]. International Journal of Climatology, 2018, 38(12): 4355-4368.
doi: 10.1002/joc.2018.38.issue-12 |
[18] |
张文杰, 程维明, 李宝林, 等. 气候变化下的祁连山地区近40年多年冻土分布变化模拟[J]. 地理研究, 2014, 33(7): 1275-1284.
doi: 10.11821/dlyj201407008 |
[ Zhang Wenjie, Cheng Weiming, Li Baolin, et al. Simulation of the permafrost distribution on Qilian Mountains over past 40 years under the influence of climate change[J]. Geographical Research, 2014, 33(7): 1275-1284. ]
doi: 10.11821/dlyj201407008 |
|
[19] |
刘兰娅, 勾晓华, 张芬, 等. 升温对祁连山东部青海云杉径向生长的影响[J]. 应用生态学报, 2021, 32(10): 3576-3584.
doi: 10.13287/j.1001-9332.202110.019 |
[ Liu Lanya, Gou Xiaohua, Zhang Fen, et al. Effects of warming on radial growth of Picea crassifolia in the eastern Qilian Mountains, China[J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3576-3584. ]
doi: 10.13287/j.1001-9332.202110.019 |
|
[20] |
Luo L H, Ma W, Zhuang Y L, et al. The impacts of climate change and human activities on alpine vegetation and permafrost in the Qinghai-Tibet engineering corridor[J]. Ecological Indicators, 2019, 93: 24-35.
doi: 10.1016/j.ecolind.2018.04.067 |
[21] | 晋子振, 秦翔, 赵求东, 等. 祁连山西段老虎沟流域消融季径流变化特征研究[J]. 干旱区地理, 2023, 46(2):178-190. |
[ Jin Zizhen, Qin Xiang, Zhao Qiudong, et al. Characteristics of runoff variation during ablation season in Laohugou watershed of western Qilian Mountains[J]. Arid Land Geography, 2023, 46(2): 178-190. ] | |
[22] | 杨金虎, 江志红, 王鹏祥, 等. 中国年极端降水事件的时空分布特征[J]. 气候与环境研究, 2018, 51(1): 75-83. |
[ Yang Jinhu, Jiang Zhihong, Wang Pengxiang, et al. Temporal and spatial characteristic of extreme precipitation event in China[J]. Climatic and Environmental Research, 2018, 51(1): 75-83. ] | |
[23] | 程鹏, 孔祥伟, 罗汉, 等. 近60 a以来祁连山中部气候变化及其径流响应研究[J]. 干旱区地理, 2020, 43(5): 1192-1201. |
[ Cheng Peng, Kong Xiangwei, Luo Han, et al. Climate change and its runoff response in the middle section of the Qilian Mountains in the past 60 years[J]. Arid Land Geography, 2020, 43(5): 1192-1201. ] | |
[24] |
Zhang Y, Shao X M, Yin Z Y, et al. Characteristics of extreme droughts inferred from tree-ring data in the Qilian Mountains, 1700—2005[J]. Climate Research, 2011, 50(2-3): 141-159.
doi: 10.3354/cr01051 |
[25] |
Gou X H, Gao L L, Deng Y, et al. An 850-year tree-ring-based reconstruction of drought history in the western Qilian Mountains of northwestern China[J]. International Journal of Climatology, 2015, 35(11): 3308-3319.
doi: 10.1002/joc.2015.35.issue-11 |
[26] |
Yang B, Qin C, Wang J L, et al. A 3500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(8): 2903-2908.
doi: 10.1073/pnas.1319238111 pmid: 24516152 |
[27] |
Gou X H, Deng Y, Gao L L, et al. Millennium tree-ring reconstruction of drought variability in the eastern Qilian Mountains, northwest China[J]. Climate Dynamics, 2015, 45(7-8): 1761-1770.
doi: 10.1007/s00382-014-2431-y |
[28] |
Yang B, Kang S Y, Ljungqvist F C, et al. Drought variability at the northern fringe of the Asian summer monsoon region over the past millennia[J]. Climate Dynamics, 2014, 43(3-4): 845-859.
doi: 10.1007/s00382-013-1962-y |
[29] | 施雅风, 沈永平, 胡汝骥. 西北气候由暖干向暖湿转型的信号、影响和前景初步探讨[J]. 冰川冻土, 2002, 24(3): 219-226. |
[ Shi Yafeng, Shen Yongping, Hu Ruji. Preliminary study on signal, impact and foreground of climatic shift from warm-dry to warm-humid in northwest China[J]. Journal of Glaciology and Geocryology, 2002, 24(3): 219-226. ] | |
[30] |
丁一汇, 柳艳菊, 徐影, 等. 全球气候变化的区域响应: 中国西北地区气候“暖湿化”趋势、成因及预估研究进展与展望[J]. 地球科学进展, 2023, 38(6): 551-562.
doi: 10.11867/j.issn.1001-8166.2023.027 |
[ Ding Yihui, Liu Yanju, Xu Ying, et al. Regional responses to global climate change: Progress and prospects for trend, causes, and projection of climatic warming-wetting in northwest China[J]. Advances in Earth Science, 2023, 38(6): 551-562. ]
doi: 10.11867/j.issn.1001-8166.2023.027 |
|
[31] |
Shi H, Wang B, Cook E R, et al. Asian summer precipitation over the past 544 years reconstructed by merging tree rings and historical documentary records[J]. Journal of Climate, 2018, 31(19): 7845-7861.
doi: 10.1175/JCLI-D-18-0003.1 |
[32] |
Cook E R, Anchukaitis K J, Buckley B M, et al. Asian monsoon failure and megadrought during the Last Millennium[J]. Science, 2010, 328(5977): 486-489.
doi: 10.1126/science.1185188 pmid: 20413498 |
[33] |
Shi F, Zhao S, Guo Z T, et al. Multi-proxy reconstructions of May-September precipitation field in China over the past 500 years[J]. Climate of the Past, 2017, 13(12): 1919-1938.
doi: 10.5194/cp-13-1919-2017 |
[34] |
Liu Y, Zheng J Y, Hao Z X, et al. A dataset of standard precipitation index reconstructed from multi-proxies over Asia for the past 300 years[J]. Earth System Science Data, 2022, 14(12): 5717-5735.
doi: 10.5194/essd-14-5717-2022 |
[35] |
Feng S, Hu Q, Wu Q R, et al. A gridded reconstruction of warm season precipitation for Asia spanning the Past Half Millennium[J]. Journal of Climate, 2013, 26(7): 2192-2204.
doi: 10.1175/JCLI-D-12-00099.1 |
[36] | Liu Y, Hao Z X, Zhang X Z, et al. Intercomparisons of multiproxy-based gridded precipitation datasets in monsoon Asia: Cross-validation and spatial patterns with different phase combinations of multidecadal oscillations[J]. Climatic Change, 2021, 165(1-2): 31, doi: 10.1007/s10584-021-03072-6. |
[37] |
Lean J L. Estimating solar irradiance since 850 CE[J]. Earth and Space Science, 2018, 5(4): 133-149.
doi: 10.1002/ess2.v5.4 |
[38] |
Crowley T J. Causes of climate change over the past 1000 years[J]. Science, 2000, 289(5477): 270-277.
pmid: 10894770 |
[39] | Macdonald G M, Case R A. Variations in the Pacific Decadal Oscillation over the past millennium[J]. Geophysical Research Letters, 2005, 32(8): L08703, doi: 10.1029/2005GL022478. |
[40] |
Wang J L, Yang B, Ljungqvist F C, et al. Internal and external forcing of multidecadal Atlantic climate variability over the past 1200 years[J]. Nature Geoscience, 2017, 10(7): 512-517.
doi: 10.1038/ngeo2962 |
[41] |
Ault T R, George S S, Smerdon J E, et al. A robust null hypothesis for the potential causes of megadrought in western north America[J]. Journal of Climate, 2018, 31(1): 3-24.
doi: 10.1175/JCLI-D-17-0154.1 |
[42] |
Stevenson S, Overpeck J T, Fasullo J, et al. Climate variability, volcanic forcing, and Last Millennium hydroclimate extremes[J]. Journal of Climate, 2018, 31(11): 4309-4327.
doi: 10.1175/JCLI-D-17-0407.1 |
[43] | 刘旻霞, 焦骄, 潘竟虎, 等. 青海省植被净初级生产力(NPP)时空格局变化及其驱动因素[J]. 生态学报, 2020, 40(15): 5306-5317. |
[ Liu Minxia, Jiao Jiao, Pan Jinghu, et al. Spatial and temporal patterns of planting NPP and its driving factors in Qinghai Province[J]. Acta Ecologica Sinica, 2020, 40(15): 5306-5317. ] | |
[44] | 徐勇, 戴强玉, 黄雯婷, 等. 2000—2020年西南地区植被NDVI时空变化及驱动机制探究[J]. 环境科学, 2023, 44(1): 323-335. |
[ Xu Yong, Dai Qiangyu, Huang Wenting, et al. Spatio-temporal variation in vegetation cover and its driving mechanism exploration in southwest China from 2000 to 2020[J]. Environment Science, 2023, 44(1): 323-335. ]
doi: 10.1021/es902899n |
|
[45] | 苏玥, 张存厚, 阿木尔萨那, 等. 1981—2018年内蒙古典型草原季节性冻土对气候变化的响应[J]. 干旱区地理, 2022, 45(3): 684-694. |
[ Su Yue, Zhang Cunhou, Amuersana, et al. Response of seasonal frozen soil to climate change on a typical steppe of Inner Mongolia during 1981—2018[J]. Arid Land Geography, 2022, 45(3): 684-694. ] | |
[46] |
王有恒, 李丹华, 卢国阳, 等. 祁连山气候变化特征及其对水资源的影响[J]. 应用生态学报, 2022, 33(10): 2805-2812.
doi: 10.13287/j.1001-9332.202210.024 |
[ Wang Youheng, Li Danhua, Lu Guoyang, et al. Characteristics of climate change and its impact on water resources in Qilian Mountains, China[J]. Chinese Journal of Applied Ecology, 2022, 33(10): 2805-2812. ]
doi: 10.13287/j.1001-9332.202210.024 |
|
[47] |
Tian Q H, Zhou X J, Gou X H, et al. Analysis of reconstructed annual precipitation from tree-rings for the past 500 years in the middle Qilian Mountain[J]. Science China-Earth Sciences, 2012, 55(5): 770-778.
doi: 10.1007/s11430-012-4375-6 |
[48] |
Sun J Y, Liu Y. Drought variations in the middle Qilian Mountains, northeast Tibetan Plateau, over the last 450 years as reconstructed from tree rings[J]. Dendrochronologia, 2013, 31(4): 279-285.
doi: 10.1016/j.dendro.2012.07.004 |
[49] | 刘芸芸, 张雪芹. 西北干旱区空中水资源的时空变化特征及其原因分析[J]. 气候变化研究进展, 2011, 7(6): 385-392. |
[ Liu Yunyun, Zhang Xueqin. Variations of atmospheric water resources over the arid region of northwest China and its causes[J]. Advances in Climate Change Research, 2011, 7(6): 385-392. ] | |
[50] |
Liu J A, Wang B, Wang H L, et al. Forced response of the East Asian summer rainfall over the past millennium: Results from a coupled model simulation[J]. Climate Dynamics, 2011, 36(1-2): 323-336.
doi: 10.1007/s00382-009-0693-6 |
[51] |
Zhou T J, Li B, Man W M, et al. A comparison of the Medieval Warm Period, Little Ice Age and 20th century warming simulated by the FGOALS climate system model[J]. Chinese Science Bulletin, 2011, 56(28-29): 3028-3041.
doi: 10.1007/s11434-011-4641-6 |
[52] |
Chen F H, Chen J H, Huang W, et al. Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales[J]. Earth-Science Reviews, 2019, 192: 337-354.
doi: 10.1016/j.earscirev.2019.03.005 |
[53] |
Jin L Y, Chen F H, Morrill C, et al. Causes of early Holocene desertification in arid central Asia[J]. Climate Dynamics, 2012, 38(7-8): 1577-1591.
doi: 10.1007/s00382-011-1086-1 |
[54] |
Zhang Y, Tian Q H, Gou X H, et al. Annual precipitation reconstruction since AD 775 based on tree rings from the Qilian Mountains, northwestern China[J]. International Journal of Climatology, 2011, 31(3): 371-381.
doi: 10.1002/joc.v31.3 |
[55] |
Shen C, Wang W C, Hao Z, et al. Exceptional drought events over eastern China during the last five centuries[J]. Climatic Change, 2007, 85(3-4): 453-471.
doi: 10.1007/s10584-007-9283-y |
[56] |
Man W M, Zhou T J, Jungclaus J H. Effects of large volcanic eruptions on global summer climate and East Asian Monsoon changes during the Last Millennium: Analysis of MPI-ESM simulations[J]. Journal of Climate, 2014, 27(19): 7394-7409.
doi: 10.1175/JCLI-D-13-00739.1 |
[57] |
Iles C E, Hegerl G C, Schurer A P, et al. The effect of volcanic eruptions on global precipitation[J]. Journal of Geophysical Research-Atmospheres, 2013, 118(16): 8770-8786.
doi: 10.1002/jgrd.v118.16 |
[58] |
Zhuo Z H, Gao C C, Pan Y Q. Proxy evidence for China’s monsoon precipitation response to volcanic aerosols over the past seven centuries[J]. Journal of Geophysical Research-Atmospheres, 2014, 119(11): 6638-6652.
doi: 10.1002/jgrd.v119.11 |
[59] | Hernandez A, Martin-Puertas C, Moffa-Sanchez P, et al. Modes of climate variability: Synthesis and review of proxy-based reconstructions through the Holocene[J]. Earth-Science Reviews, 2020, 209: 103286, doi: 10.1016/j.earscirev.2020.103286. |
[60] |
Fang K Y, Chen D L, Ilvonen L, et al. Oceanic and atmospheric modes in the Pacific and Atlantic Oceans since the Little Ice Age (LIA): Towards a synthesis[J]. Quaternary Science Reviews, 2019, 215: 293-307.
doi: 10.1016/j.quascirev.2019.05.014 |
[61] |
Si D, Ding Y H. Oceanic forcings of the interdecadal variability in East Asian summer rainfall[J]. Journal of Climate, 2016, 29(21): 7633-7649.
doi: 10.1175/JCLI-D-15-0792.1 |
[62] |
Mccarthy G D, Haigh I D, Hirschi J J M, et al. Ocean impact on decadal Atlantic climate variability revealed by sea-level observations[J]. Nature, 2015, 521(7553): 508-510.
doi: 10.1038/nature14491 |
[63] |
Liu Y W, Chiang J C H, Chou C, et al. Atmospheric teleconnection mechanisms of extratropical North Atlantic SST influence on Sahel rainfall[J]. Climate Dynamics, 2014, 43(9-10): 2797-2811.
doi: 10.1007/s00382-014-2094-8 |
[64] | 丁一汇, 李怡, 王遵娅, 等. 亚非夏季风的年代际变化: 大西洋多年代际振荡与太平洋年代际振荡的协同作用[J]. 大气科学学报, 2020, 43(1): 20-32. |
[ Ding Yihui, Li Yi, Wang Zunya, et al. Interdecadal variation of Afro-Asian summer monsoon: Coordinated effects of AMO and PDO oceanic modes[J]. Transactions of Atmospheric Sciences, 2020, 43(1): 20-32. ] | |
[65] | 朱益民, 杨修群. 太平洋年代际振荡与中国气候变率的联系[J]. 气象学报, 2003, 61(6): 641-654. |
[ Zhu Yimin, Yang Xiuqun. Relationships between Pacific Decadal Oscillation (PDO) and climate variabilities in China[J]. Acta Meteorologica Sinica, 2003, 61(6): 641-654. ] | |
[66] | 程乘, 朱益民, 丁黄兴, 等. 中国东部地区夏季降水和环流的年代际转型及其与PDO的联系[J]. 气象科学, 2017, 37(4): 450-457. |
[ Chen Cheng, Zhu Yimin, Ding Huangxing, et al. The interdecadal shift of summer precipitation and atmospheric circulation over east China and its relationship with PDO[J]. Journal of the Meteorological Sciences, 2017, 37(4): 450-457. ] | |
[67] | 贾艳青, 张勃. 近57年中国北方气候干湿变化及与太平洋年代际振荡的关系[J]. 土壤学报, 2019, 56(5): 1085-1097. |
[ Jia Yanqing, Zhang Bo. Relationship of dry-wet climate changes in northern China in the past 57 years with Pacific Decadal Oscillation (PDO)[J]. Acta Pedologica Sinica, 2019, 56(5): 1085-1097. ] | |
[68] | Wang S S, Huang J P, Huang G, et al. Enhanced impacts of Indian Ocean Sea surface temperature on the dry/wet variations over northwest China[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(11): e2022JD036533, doi: 10.1029/2022JD036533. |
[69] |
Peng D D, Zhou T J. Why was the arid and semiarid northwest China getting wetter in the recent decades?[J]. Journal of Geophysical Research-Atmospheres, 2017, 122(17): 9060-9075.
doi: 10.1002/jgrd.v122.17 |
[70] |
Treydte K S, Schleser G H, Helle G, et al. The twentieth century was the wettest period in northern Pakistan over the past millennium[J]. Nature, 2006, 440(7088): 1179-1182.
doi: 10.1038/nature04743 |
[1] | MA Xiaomin, ZHANG Zhibin, GUO Qianqian, ZHAO Xuewei, ZHANG Ning. Spatial and temporal evolution and driving factors of population in Lanzhou City from 2000 to 2020 [J]. Arid Land Geography, 2025, 48(1): 168-178. |
[2] | XU Xiaoliang, LIU Xuyi, GUAN Jingyun, YANG Jingjing, WANG Mingchen, BAO Longfei. Spatiotemporal evolution and driving factors of high-quality development of cultural and tourism integration in border ethnic areas in western China [J]. Arid Land Geography, 2024, 47(9): 1596-1605. |
[3] | LI Zhi, ZHU Chenggang, WANG Jiayou, LIU Yongchang, WANG Chuan, ZHANG Xueqi, HAN Shiru, FANG Gonghuan. Estimation of evaporation loss from typical lakes in the Kumukuli Basin, East Kunlun Mountains [J]. Arid Land Geography, 2024, 47(8): 1263-1276. |
[4] | ZHANG Zhiming, SUN Xiaomei, BAO Duanhong, YAO Baohui, WANG Zhicheng, SU Junhu. Biomass and soil nutrient characteristics of five dominant plant species in the desert grassland of the northern foothills of the Qilian Mountains [J]. Arid Land Geography, 2024, 47(4): 662-671. |
[5] | WANG Jian, GUAN Yao, HE Xinghong, DAI Yunhao, CHEN Yiwei, WANG Yuqiang, LI Huiwen, FAN Debao. Dynamic monitoring and evaluation of ecological environment quality in Tumshuk City from 2000 to 2021 [J]. Arid Land Geography, 2024, 47(3): 465-473. |
[6] | ZHOU Cheng, ZHAO Yaling, REN Minmin, JIN Yiting, LYU Sisi. Spatiotemporal differentiation, center of gravity evolution and driving factors of national wetland parks in the Yellow River Basin [J]. Arid Land Geography, 2024, 47(3): 506-514. |
[7] | WANG Huixian, YANG Bei, YANG Ningjun, LI Luyao. Tourism economic differences and key driving factors in the Yellow River Basin [J]. Arid Land Geography, 2024, 47(3): 515-527. |
[8] | LIU Honghong, LIU Shufang. Spatiotemporal evolution and obstacle identification of complex ecosystem resilience in the Qilian Mountain area [J]. Arid Land Geography, 2024, 47(2): 237-247. |
[9] | MA Zhenbang,WANG Sijian,LI Wei,LYU Peng,GUO Xiaodong. Poverty evolution and its implications in the Liupan Mountain Area of Gansu Province from 1986 to 2020 [J]. Arid Land Geography, 2023, 46(9): 1545-1555. |
[10] | FENG Yiming, LYU Chunyan, WANG Ling, ZHAO Weijun, MA Xue’e, DU Junlin, HE Junling. Carbon and nitrogen storage and allocation patterns of Picea crassifolia forest with different stand density [J]. Arid Land Geography, 2023, 46(7): 1133-1144. |
[11] | LU Xiongying, LIU Xiande, MA Rui, ZHAO Weijun, JING Wenmao, HE Xiaoling, ZHAO Changxing. Response of Picea crassifolia forest regeneration characteristics to topographic factors in Pailugou watershed of Qilian Mountains [J]. Arid Land Geography, 2023, 46(4): 604-613. |
[12] | ZHUO Jing,HU Hao,HE Huijuan,WANG Zhi,YANG Chengrui. Spatiotemporal variation and driving factors of ecological vulnerability in the Loess Plateau of northern Shaanxi [J]. Arid Land Geography, 2023, 46(11): 1768-1777. |
[13] | YANG Li,FU Yuhui,WANG Jiaojiao. Spatiotemporal distribution patterns and driving factors of tourism information flow in Chinese provinces along the Belt and Road [J]. Arid Land Geography, 2023, 46(10): 1714-1722. |
[14] | TAO Zefu,WANG Shiqing,SUN Piling,LI Kaidi,TIAN Wen,HAN Xiaoxiao. Spatio-temporal differentiation and driving factors of cropland in the agro-pastoral ecotone of northern China [J]. Arid Land Geography, 2022, 45(1): 153-163. |
[15] | ZHANG Junmin,RONG Cheng,MA Yuxiang. Spatial and temporal differences and driving factors of the green development of urbanization in Xinjiang [J]. Arid Land Geography, 2022, 45(1): 251-262. |
|