Arid Land Geography ›› 2024, Vol. 47 ›› Issue (1): 58-67.doi: 10.12118/j.issn.1000-6060.2023.333
• Earth Surface Process • Previous Articles Next Articles
LIN Arong1(),ZHOU Dongmei2,MA Jing2,ZHU Xiaoyan2,JIANG Jing1,ZHANG Jun2,3()
Received:
2023-07-02
Revised:
2023-09-13
Online:
2024-01-25
Published:
2024-01-26
LIN Arong, ZHOU Dongmei, MA Jing, ZHU Xiaoyan, JIANG Jing, ZHANG Jun. Evaluation of wind prevention and sand fixation function in Shule River Basin based on RWEQ model[J].Arid Land Geography, 2024, 47(1): 58-67.
Tab. 2
Land use change in Shule River Basin from 2008 to 2018"
土地利用类型 | 2008年 | 2013年 | 2018年 | 2008—2018年 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
面积/km2 | 比例/% | 面积/km2 | 比例/% | 面积/km2 | 比例/% | 增减量/km2 | ||||
耕地 | 1405.94 | 1.21 | 1744.23 | 1.50 | 1788.95 | 1.54 | 383.01 | |||
林地 | 2.54 | 0.00 | 2.56 | 0.00 | 2.66 | 0.00 | 0.12 | |||
草地 | 13600.37 | 11.70 | 15125.72 | 13.01 | 15088.86 | 12.98 | 1488.49 | |||
水域 | 573.78 | 0.49 | 481.83 | 0.41 | 423.28 | 0.36 | -150.50 | |||
建设用地 | 7.63 | 0.01 | 8.27 | 0.01 | 9.23 | 0.01 | 1.60 | |||
未利用地 | 100637.66 | 86.59 | 98865.29 | 85.06 | 98914.89 | 85.10 | -1722.77 | |||
湿地 | 0.03 | 0.00 | 0.04 | 0.00 | 0.08 | 0.00 | 0.05 |
Tab. 3
Wind prevention and sand fixation services in the Shule River Basin from 2008 to 2018"
年份 | 土地利用类型 | 面积/km2 | 防风固沙量/104 t·km-2 | 单位面积潜在防风固沙量/104 t·km-2 | 单位面积实际防风固沙量/104 t·km-2 | 单位面积防风固沙量/t·km-2 |
---|---|---|---|---|---|---|
2008 | 耕地 | 1405.94 | 1.84 | 0.18 | 0.18 | 13.08 |
林地 | 2.54 | 0.02 | 0.44 | 0.43 | 68.90 | |
草地 | 13600.37 | 41.39 | 0.16 | 0.16 | 30.43 | |
湿地 | 0.03 | 0.00 | 0.05 | 0.05 | 4.74 | |
水域 | 573.78 | 0.68 | 0.13 | 0.13 | 11.85 | |
总计 | 15582.66 | 43.93 | 0.96 | 0.95 | 129.00 | |
2013 | 耕地 | 1744.23 | 34.13 | 0.56 | 0.54 | 195.70 |
林地 | 2.56 | 0.02 | 0.41 | 0.41 | 69.21 | |
草地 | 15125.72 | 68.29 | 0.23 | 0.22 | 45.15 | |
湿地 | 0.04 | 0.00 | 0.07 | 0.06 | 15.07 | |
水域 | 481.83 | 1.32 | 0.31 | 0.31 | 27.36 | |
总计 | 17354.38 | 103.76 | 1.58 | 1.54 | 352.49 | |
2018 | 耕地 | 1788.95 | 33.13 | 0.54 | 0.52 | 185.22 |
林地 | 2.66 | 0.02 | 0.42 | 0.42 | 77.25 | |
草地 | 15088.86 | 94.97 | 0.27 | 0.27 | 62.94 | |
湿地 | 0.08 | 0.00 | 0.07 | 0.07 | 12.73 | |
水域 | 423.28 | 1.41 | 0.37 | 0.37 | 33.21 | |
总计 | 17303.83 | 129.53 | 1.67 | 1.65 | 371.35 |
Tab. 7
Comprehensive evaluation of wind prevention and sand fixation function"
年份 | F1 | F2 | F | 排序 |
---|---|---|---|---|
2008 | -4.14 | 0.64 | -3.07 | 11 |
2009 | -3.01 | 0.89 | -2.18 | 10 |
2010 | -1.11 | -0.63 | -0.92 | 9 |
2011 | -0.35 | -0.75 | -0.36 | 7 |
2012 | -0.80 | -1.29 | -0.77 | 8 |
2013 | 0.62 | -0.65 | 0.39 | 6 |
2014 | 0.78 | -0.22 | 0.56 | 5 |
2015 | 1.57 | 0.73 | 1.29 | 4 |
2016 | 2.35 | 0.47 | 1.84 | 1 |
2017 | 1.99 | 0.47 | 1.57 | 3 |
2018 | 2.10 | 0.35 | 1.64 | 2 |
[1] | 崔桂鹏, 肖春蕾, 雷加强, 等. 大国治理: 中国荒漠化防治的战略选择与未来愿景[J]. 中国科学院院刊, 2023, 38(7): 943-955. |
[Cui Guipeng, Xiao Chunlei, Lei Jiaqiang, et al. China’s governance: Strategy choice and future vision for combating desertification[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(7): 943-955.] | |
[2] |
Li D J, Xu D Y. Sand fixation function response to climate change and land use in northern China from 1981 to 2015[J]. Aeolian Research, 2019, 40: 23-33.
doi: 10.1016/j.aeolia.2019.05.002 |
[3] | 周凡, 周冬梅, 金银丽, 等. 疏勒河流域生态系统服务供需空间匹配特征[J]. 干旱区地理, 2023, 46(3): 471-480. |
[Zhou Fan, Zhou Dongmei, Jin Yinli, et al. Spatial matching characteristics of supply and demand of ecosystem services in the Shule River Basin[J]. Arid Land Geography, 2023, 46(3): 471-480.] | |
[4] | 杨静, 周冬梅, 马静, 等. 疏勒河流域农业水土资源时空匹配特征分析[J]. 干旱区地理, 2023, 46(6): 982-992. |
[Yang Jing, Zhou Dongmei, Ma Jing, et al. Spatial and temporal matching characteristics of agricultural land and water resources in the Shule River Basin[J]. Arid Land Geography, 2023, 46(6): 982-992.] | |
[5] |
潘竟虎, 董磊磊. 2001—2010年疏勒河流域生态系统质量综合评价[J]. 应用生态学报, 2016, 27(9): 2907-2915.
doi: 10.13287/j.1001-9332.201609.015 |
[Pan Jinghu, Dong Leilei. Comprehensive evaluation of ecosystem quality in the Shule River Basin, northwest China from 2001 to 2010[J]. Chinese Journal of Applied Ecology, 2016, 27(9): 2907-2915.]
doi: 10.13287/j.1001-9332.201609.015 |
|
[6] | 齐敬辉. 疏勒河流域绿洲生态演变研究[D]. 兰州: 兰州大学, 2017. |
[Qi Jinghui. The research on oasis ecological evolution of Shule River Basin[D]. Lanzhou: Lanzhou University, 2017.] | |
[7] | 赖锋, 乔占明, 熊增连. 青海省风蚀量及防风固沙量时空特征分析[J]. 测绘科学, 2023, 48(1): 148-156. |
[Lai Feng, Qiao Zhanming, Xiong Zenglian. Spatiotemporal characteristics of wind erosion and wind prevention and sand fixation in Qinghai Province[J]. Science of Surveying and Mapping, 2023, 48(1): 148-156.] | |
[8] |
Bagnold R A. A further journey through the Libyan desert[J]. Geographical Journal, 1933, 82(2): 103-126.
doi: 10.2307/1785658 |
[9] |
Woodruff N P, Siddoway F H. A wind erosion equation[J]. Soil Science Society of America Journal, 1965, 29(5): 602-608.
doi: 10.2136/sssaj1965.03615995002900050035x |
[10] | Gregory J M, Wilson G R, Singh U B, et al. TEAM: Integrated, process-based wind-erosion model[J]. Environmental Modelling & Software, 2004, 19(2): 205-215. |
[11] | Bocharov A P. A description of devices used in the study of wind erosion of soils[M]. New Delhi: Oxonian Press, 1984. |
[12] | Van Pelt R S, Zobeck T M, Potter K N, et al. Validation of the wind erosion stochastic simulator (WESS) and the revised wind erosion equation (RWEQ) for single events[J]. Environmental Modelling & Software, 2004, 19(2): 191-198. |
[13] | Fryrcar D W, Chen W N, Lester C. Revised wind erosion equation[J]. Annals of Arid Zone, 2001, 40(3): 265-279. |
[14] | Fryrear D W, Bilbro J D, Saleh A, et al. RWEQ: Improved wind erosion technology[J]. Journal of Soil and Water Conservation, 2000, 55(2): 183-189. |
[15] | Hagen L J. Evaluation of the wind erosion prediction system (WEPS) erosion sub model on cropland fields[J]. Environmental Modelling & Software, 2004, 19(2): 171-176. |
[16] |
巩国丽, 刘纪远, 邵全琴. 基于RWEQ的20世纪90年代以来内蒙古锡林郭勒盟土壤风蚀研究[J]. 地理科学进展, 2014, 33(6): 825-834.
doi: 10.11820/dlkxjz.2014.06.011 |
[Gong Guoli, Liu Jiyuan, Shao Quanqin. Wind erosion in Xilingol League, Inner Mongolia since the 1990s using the revised wind erosion equation[J]. Progress in Geography, 2014, 33(6): 825-834.]
doi: 10.11820/dlkxjz.2014.06.011 |
|
[17] |
王洋洋, 肖玉, 谢高地, 等. 基于RWEQ的宁夏草地防风固沙服务评估[J]. 资源科学, 2019, 41(5): 980-991.
doi: 10.18402/resci.2019.05.14 |
[Wang Yangyang, Xiao Yu, Xie Gaodi, et al. Sand-fixing function of the grassland ecosystem in Ningxia based on the revised wind erosion model[J]. Resources Science, 2019, 41(5): 980-991.]
doi: 10.18402/resci.2019.05.14 |
|
[18] | 徐洁, 肖玉, 谢高地, 等. 防风固沙型重点生态功能区防风固沙服务的评估与受益区识别[J]. 生态学报, 2019, 39(16): 5857-5873. |
[Xu Jie, Xiao Yu, Xie Gaodi, et al. Assessment of wind erosion prevention service and its beneficiary areas identification of national key ecological function zone of windbreak and sand fixation type in China[J]. Acta Ecologica Sinica, 2019, 39(16): 5857-5873.] | |
[19] | 王蕾, 赵霞, 张琛悦, 等. 基于RWEQ模型的茫崖市防风固沙功能评估及敏感地类识别[J]. 水土保持研究, 2023, 30(1): 144-153. |
[Wang Lei, Zhao Xia, Zhang Chenyue, et al. Assessment of windbreak and sand fixation function and identification of sensitive land use types in Mangai City based on RWEQ model[J]. Research of Soil and Water Conservation, 2023, 30(1): 144-153.] | |
[20] | 黄孟冬, 肖玉, 秦克玉, 等. 1980—2018年浑善达克地区防风固沙服务时空变化及其驱动因素[J]. 生态学报, 2022, 42(18): 7612-7629. |
[Huang Mengdong, Xiao Yu, Qin Keyu, et al. Spatiotemporal dynamics and drivers of wind erosion prevention service in Otindag from 1980 to 2018[J]. Acta Ecologica Sinica, 2022, 42(18): 7612-7629.] | |
[21] |
金银丽, 周冬梅, 周凡, 等. 疏勒河流域生态安全网络构建及优化[J]. 应用生态学报, 2023, 34(4): 1063-1072.
doi: 10.13287/j.1001-9332.202304.020 |
[Jin Yinli, Zhou Dongmei, Zhou Fan, et al. Construction and optimization of ecological security network in the Shule River Basin, China[J]. Chinese Journal of Applied Ecology, 2023, 34(4): 1063-1072.]
doi: 10.13287/j.1001-9332.202304.020 |
|
[22] | 孙旭伟, 李森, 王亚晖, 等. 1975—2020年疏勒河流域绿洲时空变化研究[J]. 生态学报, 2022, 42(22): 9111-9120. |
[Sun Xuwei, Li Sen, Wang Yahui, et al. Spatiotemporal change of oasis in Shule River Basin during 1975—2020[J]. Acta Ecologica Sinica, 2022, 42(22): 9111-9120.] | |
[23] |
Che T, Li X, Jin R, et al. Snow depth derived from passive microwave remote-sensing data in China[J]. Annals of Glaciology, 2008, 49: 145-154.
doi: 10.3189/172756408787814690 |
[24] | 巩国丽. 中国北方土壤风蚀时空变化特征及影响因素分析[D]. 北京: 中国科学院大学, 2014. |
[Gong Guoli. Analysis of spatiotemporal changes and influencing factors of soil wind erosion in northern China[D]. Beijing: University of Chinese Academy of Sciences, 2014.] | |
[25] | 江凌, 肖燚, 饶恩明, 等. 内蒙古土地利用变化对生态系统防风固沙功能的影响[J]. 生态学报, 2016, 36(12): 3734-3747. |
[Jiang Ling, Xiao Yi, Rao Enming, et al. Effects of land use and cover change (LUCC) on ecosystem sand fixing service in Inner Mongolia[J]. Acta Ecologica Sinica, 2016, 36(12): 3734-3747.] | |
[26] | 王炳瑞. 1990—2015年内蒙古中西部地区风力侵蚀和固沙服务评估[D]. 兰州: 兰州大学, 2022. |
[Wang Bingrui. Assessment of wind erosion and sand-stabilization services in central and western Inner Mongolia from 1990 to 2015[D]. Lanzhou: Lanzhou University, 2022.] | |
[27] |
申陆, 田美荣, 高吉喜, 等. 浑善达克沙漠化防治生态功能区防风固沙功能的时空变化及驱动力[J]. 应用生态学报, 2016, 27(1): 73-82.
pmid: 27228595 |
[Shen Lu, Tian Meirong, Gao Jixi, et al. Spatio-temporal change of sand-fixing function and its driving forces in desertification control ecological function area of Hunshandake, China[J]. Chinese Journal of Applied Ecology, 2016, 27(1): 73-82.]
pmid: 27228595 |
|
[28] | 易秀, 李侠. 西北地区土壤资源特征及其开发利用与保护[J]. 地球科学与环境学报, 2004(4): 85-89. |
[Yi Xiu, Li Xia. Characteristics of soil resources and development and protection in the northwest region[J]. Journal of Earth Sciences and Environment, 2004(4): 85-89.] | |
[29] | 苏木亚, 郭崇慧. 基于主成分分析的单变量时间序列聚类方法[J]. 运筹与管理, 2011, 20(6): 66-72. |
[Su Muya, Guo Chonghui. Univariate time series clustering method based on principal component analysis[J]. Operations Research and Management Science, 2011, 20(6): 66-72.] | |
[30] | 郑续, 魏乐民, 郭建军, 等. 基于地理探测器的干旱区内陆河流域产水量驱动力分析——以疏勒河流域为例[J]. 干旱区地理, 2020, 43(6): 1477-1485. |
[Zheng Xu, Wei Lemin, Guo Jianjun. Driving force analysis of water yield in inland river basins of arid areas based on geo-detectors: A case of the Shule River[J]. Arid Land Geography, 2020, 43(6): 1477-1485.] | |
[31] |
黄麟, 祝萍, 肖桐, 等. 近35年三北防护林体系建设工程的防风固沙效应[J]. 地理科学, 2018, 38(4): 600-609.
doi: 10.13249/j.cnki.sgs.2018.04.014 |
[Huang Lin, Zhu Ping, Xiao Tong, et al. The sand fixation effects of three-north shelter forest program in recent 35 years[J]. Scientia Geographica Sinica, 2018, 38(4): 600-609.]
doi: 10.13249/j.cnki.sgs.2018.04.014 |
|
[32] | Li J, Ma X, Zhang C. Predicting the spatiotemporal variation in soil wind erosion across Central Asia in response to climate change in the 21st century[J]. Science of the Total Environment, 2020, 709: 136060, doi: 10.1016/j.scitotenv.2019.136060. |
[33] |
Zhang H Y, Fan J W, Cao W, et al. Response of wind erosion dynamics to climate change and human activity in Inner Mongolia, China during 1990 to 2015[J]. Science of the Total Environment, 2018, 639: 1038-1050.
doi: 10.1016/j.scitotenv.2018.05.082 |
[34] |
Bergametti G, Rajot J L, Pierre C, et al. How long does precipitation inhibit wind erosion in the Sahel?[J]. Geophysical Research Letters, 2016, 43(12): 6643-6649.
doi: 10.1002/grl.v43.12 |
[35] | Wu X G, Fan J Q, Sun L, et al. Wind erosion and its ecological effects on soil in the northern piedmont of the Yinshan Mountains[J]. Ecological Indicators, 2021, 128(1): 107825, doi: 10.1016/j.ecolind.2021.107825. |
[36] |
Li D J, Xu D Y, Wang Z Y, et al. The dynamics of sand-stabilization services in Inner Mongolia, China from 1981 to 2010 and its relationship with climate change and human activities[J]. Ecological Indicators, 2018, 88: 351-360.
doi: 10.1016/j.ecolind.2018.01.018 |
[37] |
Řeháček D, Khel T, Kučera J, et al. Effect of windbreaks on wind speed reduction and soil protection against wind erosion[J]. Soil and Water Research, 2017, 12(2): 128-135.
doi: 10.17221/45/2016-SWR |
[38] | 彭婉月, 王兆云, 李海东, 等. 黑河中下游防风固沙功能时空变化及影响因子分析[J]. 环境科学研究, 2020, 33(12): 2734-2744. |
[Peng Wanyue, Wang Zhaoyun, Li Haidong, et al. Spatio-temporal changes of sand-fixing function and its driving forces in the middle and lower reaches of Heihe River Basin[J]. Research of Environmental Sciences, 2020, 33(12): 2734-2744.] | |
[39] |
邢丽珠, 张方敏, 邢开成, 等. 基于RWEQ模型的内蒙古巴彦淖尔市土壤风蚀变化特征及归因分析[J]. 中国沙漠, 2021, 41(5): 111-119.
doi: 10.7522/j.issn.1000-694X.2021.00055 |
[Xing Lizhu, Zhang Fangmin, Xing Kaicheng, et al. Change of soil wind erosion and attribution in Bayannur, Inner Mongolia based on the revised wind erosion equation[J]. Journal of Desert Research, 2021, 41(5): 111-119.]
doi: 10.7522/j.issn.1000-694X.2021.00055 |
|
[40] |
Buschiazzo D E, Zobeck T M. Validation of WEQ, RWEQ and WEPS wind erosion for different arable land management systems in the Argentinean Pampas[J]. Earth Surface Processes and Landforms, 2008, 33(12): 1839-1850.
doi: 10.1002/esp.v33:12 |
[1] | LIU Huancai,SHI Shuqi,LI Man,ZHANG Yanfang,HAN Li. Influencing factors of maize traits and yield per unit area in the middle reaches of Shule River Basin [J]. Arid Land Geography, 2023, 46(9): 1453-1466. |
[2] | YANG Jing, ZHOU Dongmei, MA Jing, ZHU Xiaoyan, JIN Yinli, ZHOU Fan, ZHANG Jun. Spatial and temporal matching characteristics of agricultural land and water resources in the Shule River Basin [J]. Arid Land Geography, 2023, 46(6): 982-992. |
[3] | ZHOU Fan,ZHOU Dongmei,JIN Yinli,MA Jing,YANG Jing,ZHU Xiaoyan,ZHANG Jun. Spatial matching characteristics of supply and demand of ecosystem services in the Shule River Basin [J]. Arid Land Geography, 2023, 46(3): 471-480. |
[4] | SUN Lirong,ZHOU Dongmei,CEN Guozhang,MA Jing,DANG Rui,NI Fan,ZHANG Jun. Landscape ecological risk assessment and driving factors of the Shule River Basin based on the geographic detector model [J]. Arid Land Geography, 2021, 44(5): 1384-1395. |
[5] | ZHENG Xu, WEI Le-min, GUO Jian-jun, ZHOU Yan-yan, CHEN Guan-guang, YUE Dong-xia. Driving force analysis of water yield in inland river basins of arid areas based on geo-detectors: A case of the Shule River [J]. Arid Land Geography, 2020, 43(6): 1477-1485. |
[6] | NING Ya-zhou, ZHANG Fu-ping, FENG Qi, WEI Yong-fen, LI Ling, LIU Jie-yao, ZENG Pan-ru. Estimation of evapotranspiration in Shule River Basin based on SEBAL model and evaluation on irrigation efficiency [J]. Arid Land Geography, 2020, 43(4): 928-938. |
[7] | SUN Dong-yuan, HU Xiang-quan, JIN Yan-zhao, ZHANG Yun-liang, LI Yuan-hong. Prediction and evaluation of ecological water requirement of natural vegetation in the middle reaches oasis of Shulehe River Basin [J]. , 2016, 39(1): 154-161. |
|