[1] |
Darvishi B A, Soleimani M, Papi R, et al. Dust and health[M]. Islamabad: COMSATS University Islamabad, 2023: 31-49.
|
[2] |
Yu H, Yang W, Wang X H, et al. A seriously sand storm mixed air-polluted area in the margin of Tarim Basin: Temporal-spatial distribution and potential sources[J]. Science of the Total Environment, 2019, 676: 436-446.
|
[3] |
Aswini M A, Tiwari S, Singh U, et al. Aeolian dust and sea salt in marine aerosols over the Arabian Sea during the southwest monsoon: Sources and spatial variability[J]. ACS Earth and Space Chemistry, 2022, 6(4): 1044-1058.
|
[4] |
张娟, 姚晓军, 李净, 等. 基于多源遥感数据的甘肃省农业干旱研究[J]. 干旱区地理, 2023, 46(1): 11-22.
doi: 10.12118/j.issn.1000-6060.2022.165
|
|
[Zhang Juan, Yao Xiaojun, Li Jing, et al. Agricultural drought research based on multi- source remote sensing data in Gansu Province[J]. Arid Land Geography, 2023, 46(1): 11-22. ]
|
[5] |
Yang Y, Wang Z L, Lou S J, et al. Strong ozone intrusions associated with super dust storms in East Asia[J]. Atmospheric Environment, 2022, 290: 119355, doi: 10.1016/j.atmosenv.2022.119355.
|
[6] |
赵洪飞, 杨怡, 董嘉琪, 等. 基于CMIP5的中国区域气溶胶变化及其对降水的影响[J]. 干旱区研究, 2019, 36(4): 953-962.
|
|
[Zhao Hongfei, Yang Yi, Dong Jiaqi, et al. Variation of aerosol and its effects on precipitation in China based on CMIP5 models[J]. Arid Zone Research, 2019, 36(4): 953-962. ]
|
[7] |
吕彦勋, 赵洪民, 王小军, 等. 中国西北城市沙尘天气变化特征—以兰州为例[J]. 干旱区研究, 2024, 41(7): 1112-1119.
doi: 10.13866/j.azr.2024.07.03
|
|
[Lü Yanxun, Zhao Hongmin, Wang Xiaojun, et al. Dust weather changes in northwest Chinese cities: Lanzhou as a case study[J]. Arid Zone Research, 2024, 41(7): 1112-1119. ]
doi: 10.13866/j.azr.2024.07.03
|
[8] |
Fattah M A, Morshed S R, Kafy A A, et al. Wavelet coherence analysis of PM2.5 variability in response to meteorological changes in South Asian cities[J]. Atmospheric Pollution Research, 2023, 14(5): 101737, doi: 10.1016/j.apr.2023.101737.
|
[9] |
Han X, Ge C, Tao J H, et al. Air quality modeling for a strong dust event in East Asia in March 2010[J]. Aerosol and Air Quality Research, 2012, 12(4): 615-628.
|
[10] |
李玲萍, 李岩瑛, 孙占峰, 等. 河西走廊东部沙尘暴特征及地面气象因素影响机制[J]. 干旱区研究, 2019, 36(6): 1457-1465.
|
|
[Li Lingping, Li Yanying, Sun Zhanfeng, et al. Sandstorm and its affecting meteorological factors in east Hexi Corridor[J]. Arid Zone Research, 2019, 36(6): 1457-1465. ]
|
[11] |
Liu L, Wang Z L, Che H Z, et al. Climate factors influencing springtime dust activities over northern East Asia in 2021 and 2023[J]. Atmospheric Research, 2024, 303: 107342, doi: 10.1016/j.atmosres.2024.107342.
|
[12] |
Karimian H, Li Q, Wu C L, et al. Evaluation of different machine learning approaches to forecasting PM2.5 mass concentrations[J]. Aerosol and Air Quality Research, 2019, 19(6): 1400-1410.
|
[13] |
Gagliardi R V, Andenna C. Analysis of changes in pollutant concentrations levels using a meteorological normalisation technique based on a machine learning algorithm[J]. Environmental Sciences Proceedings, 2021, 8(1): 16, doi: 10.3390/ecas2021-10691.
|
[14] |
焦美玲, 韩晶, 曹彦超, 等. 庆阳市空气污染及气象因子影响特征分析[J]. 干旱区地理, 2024, 47(6): 932-941.
doi: 10.12118/j.issn.1000-6060.2023.302
|
|
[Jiao Meiling, Han Jing, Cao Yanchao, et al. Characteristics of air pollution and meteorological factors in Qingyang City[J]. Arid Land Geography, 2024, 47(6): 932-941. ]
doi: 10.12118/j.issn.1000-6060.2023.302
|
[15] |
Kang J H, Suh M S, Kwak C H. Land cover classification over East Asian region using recent MODIS NDVI data (2006—2008)[J]. Atmosphere, 2010, 20(4): 415-426.
|
[16] |
Amani M, Ghorbanian A, Ahmadi S A, et al. Google Earth Engine cloud computing platform for remote sensing big data applications: A comprehensive review[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 5326-5350.
|
[17] |
Bao C L, Yong M, Bueh C, et al. Analyses of the dust storm sources, affected areas, and moving paths in Mongolia and China in early spring[J]. Remote Sensing, 2022, 14(15): 3661, doi: 10.3390/rs14153661.
|
[18] |
黎煜满, 李磊, 谢洁岚, 等. 基于KZ滤波法的韶关市O3不同时间尺度变化特征分析研究[J]. 环境科学学报, 2023, 43(1): 128-139.
|
|
[Li Yuman, Li Lei, Xie Jielan, et al. Study on variation characteristics of O3 at different time scales in Shaoguan City based on KZ filter method[J]. Journal of Environmental Science, 2023, 43(1): 128-139. ]
|
[19] |
韩力慧, 兰童, 程水源, 等. 唐山市大气颗粒物和O3多尺度变化及影响因素[J]. 中国环境科学, 2024, 44(3): 1185-1194.
|
|
[Han Lihun, Lan Tong, Chen Shuiyuan, et al. The variations and influencing factors of atmospheric particulate matter and O3 at multiple scales in Tangshan[J]. China Environmental Science, 2024, 44(3): 1185-1194. ]
|
[20] |
Verma P, Verma R, Mallet M, et al. Assessment of human and meteorological influences on PM10 concentrations: Insights from machine learning algorithms[J]. Atmospheric Pollution Research, 2024, 102123, doi: 10.1016/j.apr.2024.102123.
|
[21] |
Muthukumar P, Cocom E, Nagrecha K, et al. Predicting PM2.5 atmospheric air pollution using deep learning with meteorological data and ground-based observations and remote-sensing satellite big data[J]. Air Quality, Atmosphere and Health, 2021, 2021: 1-14.
|
[22] |
Talbot N, Takada A, Bingham A, et al. An investigation of the impacts of a successful COVID-19 response and meteorology on air quality in New Zealand[J]. Air Quality and Climate Change, 2022, 56(1): 30-31.
|
[23] |
Wang Y J, Tang J K, Wang W H, et al. Long-term spatiotemporal characteristics and influencing factors of dust aerosols in East Asia (2000—2022)[J]. Remote Sensing, 2024, 16(2): 318, doi: 10.3390/rs16020318.
|
[24] |
史建阳, 刘旻霞, 潘竟虎, 等. 黄河几字湾气溶胶对植被总初级生产力的影响[J]. 中国环境科学, 2024, 44(6): 3314-3324.
|
|
[Shi Jianyang, Liu Minxia, Pan Jinghu, et al. The impact of aerosols in Jizi Bay of the Yellow River on the total primary productivity of vegetation[J]. China Environmental Science, 2024, 44(6): 3314-3324. ]
|
[25] |
Yin Z C, Wan Y, Zhang Y J, et al. Why super sandstorm 2021 in north China?[J]. National Science Review, 2022, 9(3): 165, doi: 10.1093/nsr/nwab165.
|
[26] |
Meng H F, Bai G Z, Wang L W. Analysis of the spatial and temporal distribution characteristics of AOD in typical industrial cities in northwest China and the influence of meteorological factors[J]. Atmospheric Pollution Research, 2024, 15(1): 101957, doi: 10.1016/j.apr.2023.101957.
|
[27] |
Gao J, Ding T, Gao H. Dominant circulation pattern and moving path of the Mongolian cyclone for the severe sand and dust storm in China[J]. Atmospheric Research, 2024, 301: 107272, doi: 10.1016/j.atmosres.2024.107272.
|
[28] |
Filonchyk M, Peterson M P, Zhang L F, et al. An analysis of air pollution associated with the 2023 sand and dust storms over China: Aerosol properties and PM10 variability[J]. Geoscience Frontiers, 2024, 15(2): 101762, doi: 10.1016/j.gsf.2023.101762.
|
[29] |
杨梅, 李岩瑛, 张春燕, 等. 河西走廊中东部春季沙尘暴变化特征及其典型个例分析[J]. 干旱区地理, 2021, 44(5): 1339-1349.
doi: 10.12118/j.issn.1000–6060.2021.05.15
|
|
[Yang Mei, Li Yanying, Zhang Chunyan, et al. Variation characteristics of spring sandstorm and its typical case analysis in the middle east of Hexi Corridor[J]. Arid Land Geography, 2021, 44(5): 1339-1349. ]
doi: 10.12118/j.issn.1000–6060.2021.05.15
|
[30] |
You Q L, Jiang Z H, Moore G W K, et al. Revisiting the relationship between observed warming and surface pressure in the Tibetan Plateau[J]. Journal of Climate, 2017, 30(5): 1721-1737.
|
[31] |
中国气象局. 大气环境气象公报(2021年)[M]. 北京: 中国气象报社, 2021: 8-13.
|
|
[China Meteorological Administration. Bulletin on atmospheric environment and meteorology (2021)[M]. Beijing: China Meteorological Press, 2021: 8-13. ]
|