收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2025, Vol. 48 ›› Issue (12): 2210-2219.doi: 10.12118/j.issn.1000-6060.2025.092 cstr: 32274.14.ALG2025092

• 土地利用与碳循环 • 上一篇    下一篇

长短期记忆网络在生态系统碳通量反演中的优势与应用

高瑞翔1,2(), 罗格平1(), 张文强1, 谢明娟1, 王渊刚1   

  1. 1 中国科学院新疆生态与地理研究所新疆 乌鲁木齐 830011
    2 中国科学院大学北京 100049
  • 收稿日期:2025-02-24 修回日期:2025-04-01 出版日期:2025-12-25 发布日期:2025-12-30
  • 通讯作者: 罗格平(1968-),男,博士,研究员,主要从事干旱区土地利用/覆被变化及其生态与气候效应、遥感与GIS应用研究. E-mail: luogp@ms.xjb.ac.cn
  • 作者简介:高瑞翔(1997-),男,硕士,主要从事机器学习碳通量模拟研究. E-mail: gaoruixiang22@mails.ucas.ac.cn
  • 基金资助:
    新疆维吾尔自治区自然科学重点基金(2022D01D01);天山英才项目(2022TSYCLJ0001)

Ecosystem carbon flux inversion method combining LSTM and fuzzy mathematics

GAO Ruixiang1,2(), LUO Geping1(), ZHANG Wenqiang1, XIE Mingjuan1, WANG Yuangang1   

  1. 1 Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    2 University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2025-02-24 Revised:2025-04-01 Published:2025-12-25 Online:2025-12-30

摘要:

基于长短期记忆网络方法,结合FLUXNET通量站观测数据与对应遥感生物物理参数数据,提出通过综合欧氏距离指数量化训练集与测试集之间数据异质性,并结合模糊数学理论构建碳通量反演模型。结果表明:(1) 通过数据预处理、模型训练,分别利用随机森林、支持向量机、多元线性回归和长短期记忆网络算法建立模型,发现长短期记忆网络在碳通量反演中具有优势。(2) 采用留一交叉验证策略,在不同气候区内构建碳通量反演模型,以反映地表空间异质性,并用决定系数(R2)对模型进行评估,发现综合欧式距离与R2之间为显著负相关。(3) 将构建的模型应用于美国通量站进行验证,总初级生产力和生态系统呼吸的R2均值均为0.72。总体而言,研究结果提出了一种有效的碳通量模拟方法,具有较好的应用潜力。

关键词: 机器学习, 长短期记忆网络, 遥感, 碳通量, 模糊数学

Abstract:

This study proposes a carbon flux inversion model based on the long short-term memory (LSTM) network. A comprehensive Euclidean distance index is introduced by integrating FLUXNET flux tower observation data with corresponding remote-sensing biophysical parameter datasets to quantify data heterogeneity between training and testing sets. Furthermore, a fuzzy mathematics theory is incorporated to develop the inversion model. Models were developed using random forest, support vector machine, multiple linear regression, and LSTM algorithms through data preprocessing and model training. Results revealed that the LSTM network performed better than the other algorithms in carbon flux inversion. In addition, using the leave-one cross-validation strategy, many carbon flux machine learning models were developed to reflect the spatial heterogeneity of the surface, and the determination coefficient R2 was used to evaluate the models. Results revealed that the comprehensive Euclidean distance was significantly negatively correlated with R2. The constructed model was applied to the US flux station for verification, and the mean R2 values of the total primary productivity and ecosystem respiration were both 0.72. Overall, this study proposed an effective carbon flux simulation method, which has good application potential.

Key words: machine learning, long short-term memory, remote sensing, carbon flux, fuzzy mathematics