| [1] |
Kanevski M, Pozdnoukhov A, Timonin V. Machine learning for spatial environmental data: Theory, applications, and software[M]. New York: EPFL Press, 2009: 40-52.
|
| [2] |
朴世龙, 何悦, 王旭辉, 等. 中国陆地生态系统碳汇估算: 方法、进展、展望[J]. 中国科学: 地球科学, 2022, 52(6): 1010-1020.
|
|
[Piao Shilong, He Yue, Wang Xuhui, et al. Estimation of carbon sinks in terrestrial ecosystems in China: Methods, progress, and prospects[J]. Scientia Sinica (Terrae), 2022, 52(6): 1010-1020.]
|
| [3] |
Zhan W W, Yang X, Ryu Y, et al. Two for one: Partitioning CO2 fluxes and understanding the relationship between solar-induced chlorophyll fluorescence and gross primary productivity using machine learning[J]. Agricultural and Forest Meteorology, 2022, 321: 108980, doi: 10.1016/j.agrformet.2022.108980.
|
| [4] |
Pichler M, Hartig F. Machine learning and deep learning: A review for ecologists[J]. Methods in Ecology and Evolution, 2023, 14(4): 994-1016.
doi: 10.1111/mee3.v14.4
|
| [5] |
Reichstein M, Camps-Valls G, Stevens B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566(7743): 195-204.
doi: 10.1038/s41586-019-0912-1
|
| [6] |
Hungershoefer K, Breon F-M, Peylin P, et al. Evaluation of various observing systems for the global monitoring of CO2 surface fluxes[J]. Atmospheric Chemistry and Physics, 2010, 10(21): 10503-10520.
|
| [7] |
Ciais P, Peylin P, Bousquet P. Regional biospheric carbon fluxes as inferred from atmospheric CO2 measurements[J]. Ecological Applications, 2000, 10(6): 1574-1589.
|
| [8] |
Foley J A, Prentice I C, Ramankutty N, et al. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics[J]. Global Biogeochemical Cycles, 1996, 10(4): 603-628.
doi: 10.1029/96GB02692
|
| [9] |
Houghton R A, House J I, Pongratz J, et al. Carbon emissions from land use and land-cover change[J]. Biogeosciences, 2012, 9(12): 5125-5142.
doi: 10.5194/bg-9-5125-2012
|
| [10] |
Liang S. Quantitative remote sensing of land surfaces[M]. Canada: John Wiley & Sons, 2005: 10-22.
|
| [11] |
Liu X, Lu D, Zhang A, et al. Data-driven machine learning in environmental pollution: Gains and problems[J]. Environmental Science & Technology, 2022, 56(4): 2124-2133.
doi: 10.1021/acs.est.1c06157
|
| [12] |
Tuia D, Kellenberger B, Beery S, et al. Perspectives in machine learning for wildlife conservation[J]. Nature Communications, 2022, 13(1): 792, doi: 10.1038/s41467-022-27980-y.
pmid: 35140206
|
| [13] |
Silva L A, Zanella G. Robust leave-one-out cross-validation for high-dimensional Bayesian models[J]. Journal of the American Statistical Association, 2023, 119(547): 2369-2381.
doi: 10.1080/01621459.2023.2257893
|
| [14] |
Watson G L. On model determination, prediction and statistical learning: The case of space-time data[M]. California: University of California, Los Angeles, 2021: 1-33.
|
| [15] |
Meyer H, Pebesma E. Predicting into unknown space? Estimating the area of applicability of spatial prediction models[J]. Methods in Ecology and Evolution, 2021, 12(9): 1620-1633.
doi: 10.1111/mee3.v12.9
|
| [16] |
Xu Z, Peng J, Dong J, et al. Spatial correlation between the changes of ecosystem service supply and demand: An ecological zoning approach[J]. Landscape and Urban Planning, 2022, 217: 104258, doi: 10.1016/j.landurbplan.2021.104258.
|
| [17] |
Shafahi A, Huang W R, Najibi M, et al. Poison frogs! targeted clean-label poisoning attacks on neural networks[J]. Advances in Neural Information Processing Systems, 2018, 31: 42, doi: 10.48550/arXiv.1804.00792.
|
| [18] |
Singla A, Bertino E, Verma D. Preparing network intrusion detection deep learning models with minimal data using adversarial domain adaptation[R]. United States:Proceedings of the 15th ACM Asia Conference on Computer and Communications Security, 2020.
|
| [19] |
Gu X, Easwaran A. Towards safe machine learning for cps: Infer uncertainty from training data[R]. Montreal, QC, Canada:In 10th ACM/IEEE International Conference on Cyber-Physical Systems, 2019.
|
| [20] |
Zhu A X, Lu G, Liu J, et al. Spatial prediction based on Third Law of Geography[J]. Annals of GIS, 2018, 24(4): 225-240.
doi: 10.1080/19475683.2018.1534890
|
| [21] |
Zhu A, Lü G, Zhou C, et al. Geographic similarity: Third law of geography[J]. Journal of Geo-information Science, 2020, 22(4): 673-679.
|
| [22] |
Jegou H, Douze M, Schmid C. Product quantization for nearest neighbor search[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(1): 117-128.
doi: 10.1109/TPAMI.2010.57
|
| [23] |
Sheridan R P, Feuston B P, Maiorov V N, et al. Similarity to molecules in the training set is a good discriminator for prediction accuracy in QSAR[J]. Journal of Chemical Information and Computer Sciences, 2004, 44(6): 1912-1928.
pmid: 15554660
|
| [24] |
于贵瑞, 王秋凤, 朱先进. 区域尺度陆地生态系统碳收支评估方法及其不确定性[J]. 地理科学进展, 2011, 30(1): 103-113.
doi: 10.11820/dlkxjz.2011.01.013
|
|
[Yu Guirui, Wang Qiufeng, Zhu Xianjing. Methods and uncertainties in evaluating the carbon budgets of regional terrestrial ecosystems[J]. Progress in Geography, 2011, 30(1): 103-113.]
doi: 10.11820/dlkxjz.2011.01.013
|
| [25] |
李宏业, 谢惠春. 基于涡度相关法的不同生态系统碳通量研究进展[J]. 青海草业, 2024, 33(3): 33-38.
|
|
[Li Hongye, Xie Huichun. Research progress on carbon fluxes in different ecosystems based on eddy correlation method[J]. Qinghai Prataculture, 2024, 33(3): 33-38.]
|
| [26] |
Massman W J, Lee X. Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges[J]. Agricultural and Forest Meteorology, 2002, 113(1): 121-144.
doi: 10.1016/S0168-1923(02)00105-3
|
| [27] |
Yu G, Fu Y, Sun X, et al. Recent progress and future directions of ChinaFLUX[J]. Science in China Series D: Earth Sciences, 2006, 49(Suppl. 2): 1-23.
|
| [28] |
陈世苹, 游翠海, 胡中民, 等. 涡度相关技术及其在陆地生态系统通量研究中的应用[J]. 植物生态学报, 2020, 44(4): 291-304.
doi: 10.17521/cjpe.2019.0351
|
|
[Chen Shiping, You Cuihai, Hu Zhongmin, et al. Eddy covariance technique and its applications in flux observations of terrestrial ecosystems[J]. Chinese Journal of Plant Ecology, 2020, 44(4): 291-304.]
doi: 10.17521/cjpe.2019.0351
|
| [29] |
岳斌, 余赛芬, 董晶晶, 等. 温室气体通量测量方法及进展[J]. 光学学报, 2023, 43(18): 90-102.
|
|
[Yu Bing, Yu Saifen, Dong Jingjing, et al. Measurement methods and progress of greenhouse gas flux[J]. Optics Journal, 2023, 43(18): 90-102.]
|
| [30] |
Knyazikhin Y. MODIS leaf area index (LAI) and fraction of photosynthetically active radiation absorbed by vegetation (FPAR) product (MOD15) algorithm theoretical basis document[DB/OL]. [1999-04-30]. http://eospso gsfc nasa gov/atbd/modistables html.
|
| [31] |
Myneni R B, Hoffman S, Knyazikhin Y, et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data[J]. Remote Sensing of Environment, 2002, 83(1-2): 214-231.
doi: 10.1016/S0034-4257(02)00074-3
|
| [32] |
Ryu Y, Jiang C, Kobayashi H, et al. MODIS-derived global land products of shortwave radiation and diffuse and total photosynthetically active radiation at 5 km resolution from 2000[J]. Remote Sensing of Environment, 2018, 204: 812-825.
doi: 10.1016/j.rse.2017.09.021
|
| [33] |
Hastings D, Dunbar P, Elphingstone G, et al. SAFARI 2000 digital elevation model, 1-km (GLOBE)[J]. ORNL Distributed Active Archive Center (DAAC) Dataset, 2002, 630, doi: 10.3334/ORNLDAAC/630.
|
| [34] |
Zhang W, Luo G, Chen C, et al. Quantifying the contribution of climate change and human activities to biophysical parameters in an arid region[J]. Ecological Indicators, 2021, 129: 107996, doi: 10.1016/j.ecolind.2021.107996.
|
| [35] |
Xiao J F, Zhuang Q L, Law B E, et al. Assessing net ecosystem carbon exchange of US terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations[J]. Agricultural and Forest Meteorology, 2011, 151(1): 60-69.
doi: 10.1016/j.agrformet.2010.09.002
|
| [36] |
Gorelick N, Hancher M, Dixon M, et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment, 2017, 202: 18-27.
doi: 10.1016/j.rse.2017.06.031
|
| [37] |
Kulanuwat L, Chantrapornchai C, Maleewong M, et al. Anomaly detection using a sliding window technique and data imputation with machine learning for hydrological time series[J]. Water, 2021, 13(13): 1862, doi: 10.3390/w13131862.
|
| [38] |
Nash D J. World atlas of desertification[J]. The Geographical Journal, 1999, 165: 325-326.
doi: 10.2307/3060449
|
| [39] |
Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
doi: 10.1162/neco.1997.9.8.1735
pmid: 9377276
|
| [40] |
Graves A, Graves A. Supervised sequence labelling with recurrent neural networks[M]. New York Dordrecht London: Springer-Verlag Berlin Heidelberg, 2012: 37-45.
|
| [41] |
Ancona M, Ceolini E, Öztireli C, et al. Explainable AI:Interpreting, explaining and visualizing deep learning[M]. Switzerlan: Springer Nature Switzerland AG, 2019: 169-191.
|
| [42] |
Zhu A X. Measuring uncertainty in class assignment for natural resource maps under fuzzy logic[J]. Photogrammetric Engineering and Remote Sensing, 1997, 63(10): 1195-1201.
|
| [43] |
Fan N Q, Zhao F H, Zhu L J, et al. Digital soil mapping with adaptive consideration of the applicability of environmental covariates over large areas[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 113: 102986, doi: 10.1016/j.jag.2022.102986.
|
| [44] |
Farahani M A, Goodwell A E. Causal drivers of land-atmosphere carbon fluxes from machine learning models and data[J]. Journal of Geophysical Research: Biogeosciences, 2024, 129(6): e2023JG 007815, doi: 10.1029/2023JG007815.
|
| [45] |
Huang C, He W, Liu J, et al. Exploring the potential of long short-term memory networks for predicting net CO2 exchange across various ecosystems with multi-source data[J]. Journal of Geophysical Research: Atmospheres, 2024, 129(7): e2023JD040418, doi: 10.1029/2023JD040418.
|
| [46] |
Novick K A, Biederman J, Desai A, et al. The AmeriFlux network: A coalition of the willing[J]. Agricultural and Forest Meteorology, 2018, 249: 444-456.
doi: 10.1016/j.agrformet.2017.10.009
|