收藏设为首页 广告服务联系我们在线留言
  • 2025年4月1日 星期二

干旱区地理 ›› 2025, Vol. 48 ›› Issue (3): 455-466.doi: 10.12118/j.issn.1000-6060.2024.169 cstr: 32274.14.ALG2024169

• 植物生态 • 上一篇    下一篇

结合光学与雷达遥感的张家口坝上地区作物残茬生物量估算

于凯昕1(), 李继峰1,2,3,4(), 甄天乐1, 张夏蕾1, 李慧茹1,3, 郭中领1,2,3, 常春平1,2,3, 赵雪晴1   

  1. 1.河北师范大学地理科学学院,河北 石家庄 050000
    2.河北省环境变化遥感识别技术创新中心,河北 石家庄 050000
    3.河北省环境演变与生态建设重点实验室,河北 石家庄 050000
    4.河北省高等学校人文社会科学重点研究基地“河北师范大学地理计算与规划研究中心”,河北 石家庄 050000
  • 收稿日期:2024-03-14 修回日期:2024-05-24 出版日期:2025-03-25 发布日期:2025-03-14
  • 通讯作者: 李继峰(1987-),男,博士,副教授,主要从事水土保持与荒漠化防治研究. E-mail: lijifeng@hebtu.edu.cn
  • 作者简介:于凯昕(2000-),女,硕士研究生,主要从事遥感信息机理与环境遥感应用研究. E-mail: 19832109246@163.com
  • 基金资助:
    国家自然科学基金项目(41901001);国家自然科学基金项目(42271002);河北省高等教育教学改革研究项目(2019GJJG140)

Estimation of crop stubble biomass in the Bashang region of Zhangjiakou by combining optics and radar remote sensing

YU Kaixin1(), LI Jifeng1,2,3,4(), ZHEN Tianle1, ZHANG Xialei1, LI Huiru1,3, GUO Zhongling1,2,3, CHANG Chunping1,2,3, ZHAO Xueqing1   

  1. 1. College of Geographical Sciences, Hebei Normal University, Shijiazhuang 050000, Hebei, China
    2. Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Shijiazhuang 050000, Hebei, China
    3. Hebei Key Laboratory of Environmental Change and Ecological Construction, Shijiazhuang 050000, Hebei, China
    4. Hebei Key Research Institute of Humanities and Social Sciences at Universities “GeoComputation and Planning Center of Hebei Normal University”, Shijiazhuang 050000, Hebei, China
  • Received:2024-03-14 Revised:2024-05-24 Published:2025-03-25 Online:2025-03-14

摘要:

作物残茬等非光合植被在干旱、半干旱地区生态系统物质循环、能量流动过程中承担着不可替代的角色,同时在阻抑土壤侵蚀、保持土壤水分、促进土壤发育等方面也具有重要作用。张家口坝上地区位于首都两区建设及京津风沙源治理的核心区域,利用遥感手段估算该地区作物残茬生物量,对区域风蚀状况评估、生态环境评价及碳、氮循环研究具有重要意义。基于实地测量的作物残茬生物量、Sentinel-2光学影像、Sentinel-1雷达影像构建作物残茬光学遥感指数和雷达遥感指数,采用最优指数归一化相乘和多元线性逐步回归分析方法,建立结合光学与雷达遥感的作物残茬生物量估算模型,计算并分析2017—2023年张家口坝上地区作物残茬生物量。结果表明:(1) 光学遥感指数中,由Sentinel-2的短波红外波段(B11和B12)构建的RI(11,12)指数与作物残茬生物量的相关性最高,模型决定系数(R2)为0.744。雷达遥感指数中,交叉极化(VH)后向散射系数与作物残茬生物量的相关性最高,R2为0.409。(2) 结合光学与雷达遥感估算模型中,多元线性逐步回归模型精度最高,R2为0.796,均方根误差(RMSE)为8.84 g·m-2,可较好地预测作物残茬生物量。(3) 构建的作物残茬生物量估算模型精度较单纯使用光学遥感高约9.72%,较单纯使用雷达遥感高约66.74%。(4) 2017—2023年张家口坝上地区年均作物残茬生物量为23.74×104 t,呈波动下降趋势,作物残茬生物量年际变化受气温和降水的影响,近年来,因土地流转政策造成的种植结构变化是导致该地区作物残茬生物量下降的重要因素。

关键词: 作物残茬, 生物量, 光学遥感, 雷达遥感, 张家口坝上

Abstract:

Non-photosynthetic vegetation, such as crop stubble, plays a crucial role in material cycling and energy flow in arid and semi-arid ecosystems. It also significantly contributes to inhibiting soil erosion, retaining soil moisture, and promoting soil development. The Bashang region of Zhangjiakou Hebei Province, China is a core area for the ecological construction of Beijing-Tianjin sandstorm control and the development of the two capital areas. Estimating crop stubble biomass in this region using remote sensing is essential for evaluating regional wind erosion, the ecological environment, and the carbon and nitrogen cycles. This study utilized measured crop stubble biomass, Sentinel-2 optical images, and Sentinel-1 radar images to construct optical and radar remote sensing indices of crop stubble. Using optimal index normalization and multiple linear stepwise regression analysis, an estimation model combining optical and radar remote sensing was developed to calculate and analyze crop stubble biomass in the Bashang region from 2017 to 2023. The results show that: (1) Among the optical remote sensing indices, the RI(11,12) index, derived from Sentinel-2 short-wave infrared bands (B11 and B12), showed the highest correlation with crop stubble biomass, with a determination coefficient (R2) of 0.744. For radar remote sensing indices, the cross-polarization (VH) backscattering coefficient had the highest correlation with crop stubble biomass, achieving an R2 of 0.409. (2) The multivariate linear stepwise regression model demonstrated the highest accuracy, with an R2 of 0.796 and a root mean square error (RMSE) of 8.84 g·m-2, making it a reliable predictor of crop stubble biomass. (3) The estimation model incorporating both optical and radar remote sensing indices improved prediction accuracy by approximately 9.72% compared to optical remote sensing alone and by 66.74% compared to radar remote sensing alone. (4) From 2017 to 2023, the average annual crop stubble biomass in the Bashang region was 23.74×104 t, exhibiting a fluctuating downward trend. Annual variations in crop stubble biomass were influenced by air temperature and precipitation, while changes in planting structures driven by land transfer policies were a significant factor contributing to the decline in recent years.

Key words: crop stubble, biomass, optical remote sensing, radar remote sensing, the Bashang region of Zhangjiakou