收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2025, Vol. 48 ›› Issue (11): 1983-1994.doi: 10.12118/j.issn.1000-6060.2025.221 cstr: 32274.14.ALG2025221

• 生态与环境 • 上一篇    下一篇

2000—2023年黄河流域山西段生态环境质量时空变化及其驱动因素

张音1,2(), 孙从建3(), 刘庚1,2, 钞锦龙1,2, 耿甜伟1,2, 刘宏红1,2   

  1. 1.太原师范学院地理科学学院,山西 晋中 030619
    2.太原师范学院汾河流域地表过程与资源生态安全山西省重点实验室,山西 晋中 030619
    3.山西师范大学地理科学学院,山西 太原 030031
  • 收稿日期:2025-04-22 修回日期:2025-08-03 出版日期:2025-11-25 发布日期:2025-11-26
  • 通讯作者: 孙从建(1986-),男,博士,教授,主要从事水文水资源、资源环境评价研究. E-mail: suncongjian@sina.com
  • 作者简介:张音(1995-),女,博士,讲师,主要从事生态水文过程研究. E-mail: zhyin3621@163.com
  • 基金资助:
    山西省基础研究计划青年项目(202303021222222);山西省基础研究计划青年项目(202203021222243);山西省科技战略研究专项计划(202404030401111)

Spatiotemporal changes and driving factors of ecological environment quality in the Shanxi section of the Yellow River Basin from 2000 to 2023

ZHANG Yin1,2(), SUN Congjian3(), LIU Geng1,2, CHAO Jinlong1,2, GENG Tianwei1,2, LIU Honghong1,2   

  1. 1. School of Geographical Science, Taiyuan Normal University, Jinzhong 030619, Shanxi, China
    2. Shanxi Key Laboratory of Earth Surface Processes and Resource Ecology Security in Fenhe River Valley, Taiyuan Normal University, Jinzhong 030619, Shanxi, China
    3. School of Geographical Science, Shanxi Normal University, Taiyuan 030031, Shanxi, China
  • Received:2025-04-22 Revised:2025-08-03 Published:2025-11-25 Online:2025-11-26

摘要: 基于Google Earth Engine平台,在遥感生态指数基础上耦合气溶胶光学厚度,构建了改进型遥感生态指数(MRSEI),全面评估了2000—2023年黄河流域山西段生态环境质量的时空变化特征及其驱动机制。结果表明:(1)MRSEI显著提升了生态环境质量的评估精度,具有更强的纹理特征和细节描述能力。(2)2000—2023年黄河流域山西段生态环境质量有所改善,生态质量等级主要集中在一般和良2个等级,差等级占比极低。空间分布上,MRSEI呈现西北低、东南高的分布格局。其中,吕梁市西部生态环境最差,大同市、朔州市、忻州市等地较差,而长治市、临汾市东部、晋城市部分区域和运城市东部生态环境最优。(3)土地利用类型对生态环境质量影响力最大,其次为年降水量、坡度和高程。各因子之间交互作用显著增强,尤其是土地利用类型与其他因子交互的影响力更大。研究结果可为黄河流域山西段的生态环境保护与可持续发展提供科学依据。

关键词: 黄河流域山西段, 改进型遥感生态指数, 生态环境质量, 空间自相关, 最优参数地理探测器

Abstract:

Based on the Google Earth Engine (GEE) platform, this study coupled aerosol optical depth with the remote sensing ecological index to construct a modified remote sensing ecological index (MRSEI) for comprehensively evaluating the spatiotemporal variation and driving mechanisms of ecological environment quality in the Shanxi section of the Yellow River Basin, China, from 2000 to 2023. The results show that: (1) MRSEI substantially improved the accuracy of ecological environment quality assessment, with stronger texture features and better detail representation. (2) From 2000 to 2023, ecological environment quality in the study area improved overall. Most areas were classified as general or good, with only a small proportion at poor levels. Spatially, MRSEI indicated a low-high gradient from northwest to southeast. The western part of Lüliang City exhibited the poorest ecological quality, with unfavorable conditions also observed in Datong City, Shuozhou City, and Xinzhou City. In contrast, Changzhi City, eastern Linfen City, parts of Jincheng City, and eastern Yuncheng City showed the best conditions. (3) Land use type exerted the greatest influence on ecological environment quality, followed by annual precipitation, slope, and elevation. Interactions among factors were significantly enhanced, particularly between land use type and other variables. This study provides a scientific basis for ecological environment protection and sustainable development in the Shanxi section of the Yellow River Basin.

Key words: Shanxi section of the Yellow River Basin, modified remote sensing ecological index, ecological environment quality, spatial autocorrelation, optimal parameters-based geographic detector