干旱区地理 ›› 2023, Vol. 46 ›› Issue (9): 1453-1466.doi: 10.12118/j.issn.1000-6060.2022.601 cstr: 32274.14.ALG2022601
收稿日期:
2022-11-15
修回日期:
2022-12-25
出版日期:
2023-09-25
发布日期:
2023-09-28
作者简介:
刘焕才(1986-),男,博士,副教授,主要从事气候变化与区域可持续发展等方面的研究. E-mail: 基金资助:
LIU Huancai1,2(),SHI Shuqi1,LI Man1,ZHANG Yanfang1,HAN Li1
Received:
2022-11-15
Revised:
2022-12-25
Published:
2023-09-25
Online:
2023-09-28
摘要:
疏勒河流域是中国西北重要的粮食产区,探明气候变化和人类活动对该地区粮食作物影响规律,可为区域粮食安全提供重要科学支撑。以地处疏勒河流域中游地区的玉门市为典型研究区,采用1990—2020年气象要素、田间管理、土壤属性和玉米单产等数据,分析玉米性状及单产对自然因素(最高温、最低温、太阳辐射、风速、降水)和人为因素(政策、灌溉量、施肥量)的敏感性,在此基础上,以2017年为典型年,运用DSSAT-CERES-Maize模型定量分析主要影响因子对玉米性状和气候单产的影响程度,探明研究区玉米生长发育的适宜条件。结果表明:(1) 在疏勒河流域中游地区,气候暖湿化特征显著;化肥施用量呈现出增加-减少的变化趋势,有效灌溉面积为持续增加趋势。(2) 玉米实际单产呈小幅增加趋势,其中趋势单产由于受到推广优质品种和农田水利建设等政策的影响,呈增加-减少-稳定的变化趋势,而玉米气候单产呈减少趋势,其对最高温和降水表现出强正向敏感度,对最低温表现出强负向敏感度;玉米性状对化肥施用量、有效灌溉面积和穗期、花粒期的最低温表现为强正向敏感度,对穗期、花粒期最高温表现为强负向敏感度。(3) 玉米生长发育的适宜条件为最高温(14.80~38.56 ℃)、最低温(-0.38~22.16 ℃)、太阳辐射(3.93~25.15 MJ·m-2)、风速(0~3.81 m·s-1)以及在实际降水基础上的灌溉量(15 mm)和施肥量(10 kg·hm-2),在此范围内,最高温、最低温、风速和水肥因子与性状、单产存在“倒U型”关系,而太阳辐射与性状、单产存在“U型”关系。
刘焕才,史书琦,李曼,张艳芳,韩丽. 疏勒河流域中游地区玉米性状及单产的影响因子研究[J]. 干旱区地理, 2023, 46(9): 1453-1466.
LIU Huancai,SHI Shuqi,LI Man,ZHANG Yanfang,HAN Li. Influencing factors of maize traits and yield per unit area in the middle reaches of Shule River Basin[J]. Arid Land Geography, 2023, 46(9): 1453-1466.
表3
物候期玉米性状及气候单产对影响因子的敏感度"
物候期 | 最高温 | 最低温 | 太阳辐射 | 降水 | 风速 | 化肥施用量 | 有效灌溉面积 |
---|---|---|---|---|---|---|---|
根重占比 | F | E | -G | -E | -H | A | -B |
茎重占比 | -G | F | H | -G | I | F | C |
叶重占比 | -F | G | H | -H | I | H | A |
果重占比 | -F | G | G | -H | I | I | A |
粒数/叶面积 | -B | E | F | -D | D | F | H |
粒重/叶面积 | -A | D | F | -C | E | F | -H |
全生育期蒸腾量 | -D | E | H | I | H | B | -F |
粒数 | A | -G | I | B | G | C | F |
粒重 | -F | D | -G | -A | H | -G | -D |
籽粒氮 | B | -H | -F | -C | -H | -E | -F |
气候单产 | C | -A | H | D | E | -F | E |
表4
各生长阶段玉米性状及气候单产对影响因子敏感度"
影响因子 | 最高温 | 最低温 | 太阳辐射 | 降水 | 风速 | 化肥施用量 | 有效灌溉面积 | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
生长阶段 | 苗 期 | 穗 期 | 花粒 期 | 苗 期 | 穗 期 | 花粒 期 | 苗 期 | 穗 期 | 花粒 期 | 苗 期 | 穗 期 | 花粒 期 | 苗 期 | 穗 期 | 花粒 期 | 苗 期 | 穗 期 | 花粒 期 | 苗 期 | 穗 期 | 花粒 期 | ||||||
根重占比 | - | - | - | - | - | - | - | - | - | I | I | -H | - | - | - | A | A | A | -F | -D | -C | ||||||
茎重占比 | - | - | - | I | E | G | - | - | - | - | - | - | - | - | - | G | C | F | A | F | B | ||||||
叶重占比 | I | I | I | I | E | G | - | - | - | - | - | - | - | - | - | - | - | - | A | D | A | ||||||
果重占比 | -H | -H | -H | I | E | G | - | - | - | - | - | - | - | - | - | - | - | - | A | C | A | ||||||
粒数/叶面积 | I | -E | -G | - | - | - | - | - | - | D | D | I | -G | I | I | - | - | - | - | - | - | ||||||
粒重/叶面积 | H | -E | -G | -E | A | E | - | - | - | E | E | I | - | - | - | - | - | - | - | - | - | ||||||
全生育期蒸腾量 | I | -E | -H | -H | H | D | - | - | - | - | - | - | - | - | - | A | C | C | - | - | - | ||||||
粒数 | H | B | E | - | - | - | - | - | - | F | F | H | - | - | - | A | A | A | - | - | - | ||||||
粒重 | - | - | - | -E | B | D | - | - | - | H | H | -G | - | - | - | - | - | - | -G | -E | G | ||||||
籽粒氮 | E | G | D | - | - | - | - | - | - | -F | -E | -H | - | - | - | -F | -E | -F | - | - | - | ||||||
气候单产 | G | -G | F | -E | -E | -D | - | - | - | F | -H | G | - | - | - | - | - | - | - | - | - |
表5
影响因子参数设置"
影响因子 | 依据 | 影响因子参数 |
---|---|---|
温度 | 1990—2020年玉米物候期温度年均增长0.165 ℃ | -2.08 ℃<温度变化<1.92 ℃,逐步加减0.16 ℃,共计26种 |
太阳辐射 | 1990—2020年玉米物候期太阳辐射变化幅度为1 MJ·m-2 | -0.5 MJ·m-2<太阳辐射变化<0.5 MJ·m-2,逐步加减0.0 MJ·m-2,共计21种 |
风速 | 1990—2020年玉米物候期风速年均增长0.03 m·s-1 | -0.66 m·s-1<风速变化<0.66 m·s-1,逐步加减0.03 m·s-1,共计45种 |
水肥 | 2017年物候期降水量约为66.5 mm,玉米全生育期需水量约为410~699 mm | 全生育期灌水约25次,每次灌溉量分别为W0(0 mm)、W1(15 mm)、W2(30 mm);全生育期施入复合肥6次,基肥约占总施肥量的66.67%,其余5次每次施肥量分别为F0(0 kg·hm-2)、F1(10 kg·hm-2)、F2(20 kg·hm-2);灌溉施肥组合处理方式共计9种。 |
[1] | 王钢, 钱龙. 新中国成立70年来的粮食安全战略: 演变路径和内在逻辑[J]. 中国农村经济, 2019(9): 15-29. |
[Wang Gang, Qian Long. Grain security strategy in the 70 years since the founding of new China: Evolution path and internal logic[J]. Chinese Rural Economy, 2019(9): 15-29.] | |
[2] |
周宝元, 葛均筑, 孙雪芳, 等. 黄淮海麦玉两熟区周年光温资源优化配置研究进展[J]. 作物学报, 2021, 47(10): 1843-1853.
doi: 10.3724/SP.J.1006.2021.13012 |
[Zhou Baoyuan, Ge Junzhu, Sun Xuefang, et al. Research advance on optimizing annual distribution of solar and heat resources for double cropping system in the Yellow-Huaihe-Haihe Rivers Plain[J]. Acta Agronomica Sinica, 2021, 47(10): 1843-1853.]
doi: 10.3724/SP.J.1006.2021.13012 |
|
[3] |
Gheysari M, Mirlatifi S M, Bannayan M, et al. Interaction of water and nitrogen on maize grown for silage[J]. Agricultural Water Management, 2008, 96(5): 809-821.]
doi: 10.1016/j.agwat.2008.11.003 |
[4] | 银敏华, 李援农, 李昊, 等. 氮肥运筹对夏玉米根系生长与氮素利用的影响[J]. 农业机械学报, 2016, 47(6): 129-138. |
[Yin Minhua, Li Yuannong, Li Hao, et al. Effects of nitrogen application rates on root growth and nitrogen use of summer maize[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(6): 129-138.] | |
[5] | 宋利兵. 气候变化下中国玉米生长发育及产量的模拟[D]. 咸阳: 西北农林科技大学, 2020. |
[Song Libing. Simulation of maize growth and yield under climate change in China[D]. Xianyang: Northwest A & F University, 2020.] | |
[6] |
李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
doi: 10.3724/SP.J.1006.2022.03061 |
[Li Yijun, Lü Houquan. Effect of agricultural meteorological disasters on the production corn in the northeast China[J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.]
doi: 10.3724/SP.J.1006.2022.03061 |
|
[7] | 江铭诺, 刘朝顺, 高炜. 华北平原夏玉米潜在产量时空演变及其对气候变化的响应[J]. 中国生态农业学报, 2018, 26(6): 865-876. |
[Jiang Mingnuo, Liu Chaoshun, Gao Wei. Analysis of spatial and temporal variation in potential summer maize yield and its response to climate change in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2018, 26(6): 865-876.] | |
[8] | 陈上. 集成CERES-Maize模型和机器学习算法的玉米产量动态预测方法研究[D]. 咸阳: 西北农林科技大学, 2022. |
[Chen Shang. dynamic in-season maize yield predictions based on the CERES-Maize model and machine learning methods[D]. Xianyang: Northwest A & F University, 2020.] | |
[9] | Chen X X, Wang L C, Niu Z G, et al. The effects of projected climate change and extreme climate on maize and rice in the Yangtze River Basin, China[J]. Agricultural and Forest Meteorology, 2020, 282-283: 107867, doi: 10.1016/j.agrformet.2019.107867. |
[10] | Meng F C, Zhang J H, Yao F M, et al. Interactive effects of elevated CO2 concentration and irrigation on photosynthetic parameters and yield of maize in northeast China[J]. PLoS One, 2014, 9(5): e98318, doi: 10.1371/journal.pone.0098318. |
[11] | 吴晓丽, 李朝苏, 汤永禄, 等. 氮肥运筹对小麦产量、氮素利用效率和光能利用率的影响[J]. 应用生态学报, 2017, 28(6): 1889-1898. |
[Wu Xiaoli, Li Chaosu, Tang Yonglu, et al. Effect of nitrogen management modes on grain yield, nitrogen use efficiency and light use efficiency of wheat[J]. Chinese Journal of Applied Ecology, 2017, 28(6): 1889-1898.] | |
[12] | 张磊, 王立春, 孔丽丽, 等. 不同施肥模式下春玉米养分吸收利用和土壤养分平衡研究[J]. 土壤通报, 2017, 48(5): 1169-1176. |
[Zhang lei, Wang Lichun, Kong Lili, et al. Nutrient utilization and soil nutrient balance of spring maize under different fertilizer application modes[J]. Chinese Journal of Soil Science, 2017, 48(5): 1169-1176.] | |
[13] |
张盼盼, 邵运辉, 刘京宝, 等. 施用氮锌肥对不同夏玉米品种干物质和氮锌元素累积分配的影响[J]. 华北农学报, 2022, 37(2): 96-103.
doi: 10.7668/hbnxb.20192579 |
[Zhang Panpan, Shao Yunhui, Liu Jingbao, et al. Effect of nitrogen and zinc application on the accumulation and distribution of dry matter and nitrogen and zinc of different summer maize varieties[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(2): 96-103.]
doi: 10.7668/hbnxb.20192579 |
|
[14] | 薛庆禹, 王靖, 曹秀萍, 等. 不同播期对华北平原夏玉米生长发育的影响[J]. 中国农业大学学报, 2012, 17(5): 30-38. |
[Xue Qingyu, Wang Jing, Cao Xiuping, et al. Effect of sowing date and variety on growth and population characteristics of summer maize in North China Plain[J]. Journal of China Agricultural University, 2012, 17(5): 30-38.] | |
[15] | 李波, 孙翔龙, 姚名泽, 等. 温室秸秆不同还田量条件下DSSAT-CROPGRO-Tomato模型的调参与验证[J]. 生态学杂志, 2021, 40(3): 908-918. |
[Li Bo, Sun Xianglong, Yao Mingze, et al. Parameter estimation and verification of the DSSAT-CROPGRO-Tomato model under the condition of different amounts of straw returned to the field in the greenhouse[J]. Chinese Journal of Ecology, 2021, 40(3): 908-918.] | |
[16] |
Bai Y, Yue W J, Ding C M. Optimize the irrigation and fertilizer schedules by combining DSSAT and genetic algorithm[J]. Environmental Science and Pollution Research, 2022, 29: 52473-52482.
doi: 10.1007/s11356-022-19525-z |
[17] | 韩智博, 张宝庆, 田杰, 等. 基于CCSM4气候模式的未来气候变化对黑河绿洲玉米产量影响预测[J]. 灌溉排水学报, 2018, 37(10): 108-115. |
[Han Zhibo, Zang Baoqing, Tian Jie, et al. Yield of the maize in Heihe oasis under climate change in northwest China predicted based on the CCSM4 climate model[J]. Journal of Irrigation and Drainage, 2018, 37(10): 108-115.] | |
[18] | 王兴鹏, 辛朗, 杜江涛, 等. 基于DSSAT模型的南疆膜下滴灌棉花生长与产量模拟[J]. 农业机械学报, 2022, 53(9): 314-321. |
[Wang Xingpeng, Xin Lang, Du Jiangtao, et al. Simulation of cotton growth and yield under film drip irrigation condition based on DSSAT model in southern Xinjiang[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(9): 314-321.] | |
[19] | 钟钰, 甘林针. 资源约束下西北旱区保障粮食安全的路径研究[J]. 中州学刊, 2022(8): 42-50. |
[Zhong Yu, Gan Linzhen. Study on the path of ensuring grain security in northwest arid area under the constraint of resources[J]. Academic Journal of Zhongzhou, 2022(8): 42-50.] | |
[20] | 郭建平. 气候变化对中国农业生产的影响研究进展[J]. 应用气象学报, 2015, 26(1): 1-11. |
[Guo Jianping. Advances in impacts of climate change on agricultural production in China[J]. Journal of Applied Meteorological Science, 2015, 26(1): 1-11.] | |
[21] | Quan H, Ding D Y, Wu L H, et al. Future climate change impacts on mulched maize production in an arid irrigation area[J]. Agricultural Water Management, 2022, 266: 107550, doi: 10.1016/j.agwat.2022.107550. |
[22] |
Jiang Y W, Zhang L H, Zhang B Q, et al. Modeling irrigation management for water conservation by DSSAT-maize model in arid northwestern China[J]. Agricultural Water Management, 2016, 177: 37-45.
doi: 10.1016/j.agwat.2016.06.014 |
[23] | 董文俊, 刘健峰, 丁奠元, 等. 旱作覆膜玉米生长和水分利用对气候变化的响应[J]. 干旱地区农业研究, 2020, 38(1): 1-12, 21. |
[Dong Wenjun, Liu Jianfeng, Ding Dianyuan, et al. Response of maize growth and water utilization under plastic mulching in dryland to climate change[J]. Agricultural Research in the Arid Areas, 2020, 38(1): 1-12, 21.] | |
[24] | 梁茜, 吴清山, 葛均筑, 等. 播期对华北平原雨养夏玉米产量形成与资源利用效率的影响[J]. 作物杂志, 2021(4): 136-143. |
[Liang Qian, Wu Qingshan, Ge Junzhu, et al. Effects of sowing date on rain-fed summer maize yield formation and resource utilization in North China Plain[J]. Crops, 2021(4): 136-143.] | |
[25] | 章慧, 董艳, 张慧荟, 等. 西北旱区主要气候资源的空间变异性研究[J]. 干旱区资源与环境, 2017, 31(8): 129-135. |
[Zhang Hui, Dong Yan, Zhang Huihui, et al. Spatial variability of main climatic resources in northwest arid area[J]. Journal of Arid Land Resources and Environment, 2017, 31(8): 129-135.] | |
[26] | 孙睿, 梁璐, 杨玲. 基于气象站资料的中国地区太阳日辐射量算法研究[J]. 气象与环境科学, 2007(1): 24-27. |
[Sun Rui, Liang Lu, Yang Ling. Estimation of daily solar radiation in China based on weather station data[J]. Meteorological and Environmental Sciences, 2007(1): 24-27.] | |
[27] | 吴林荣, 王娟敏, 刘海军, 等. 陕西省太阳辐射及其日照时数的时空变化特征[J]. 水土保持通报, 2010, 30(2): 212-214. |
[Wu Linrong, Wang Juanmin, Liu Haijun, et al. Spatiotemporal variation of solar radiation and sunshine hours in Shaanxi Province[J]. Bulletin of Soil and Water Conservation, 2010, 30(2): 212-214.] | |
[28] | 郝家威. 水汽对温度变化的响应及两者在降水变率中的协同作用[D]. 南京: 南京信息工程大学, 2022. |
[Hao Jiawei. The response of water vapor to temperature change and their synergies in precipitation variability[D]. Nanjing: Nanjing University of Information Science and Technology, 2022.] | |
[29] | 陈跃萍, 武胜利, 赵昕, 等. 近60 a哈密市极端气温时空变化特征[J]. 干旱区地理, 2023, 46(6): 868-879. |
[Chen Yueping, Wu Shengli, Zhao Xin, et al. Spatial and temporal variation characteristics of extreme temperatures in Hami City in the past 60 years[J]. Arid Land Geography, 2023, 46(6): 868-879.] | |
[30] |
Hamed K H. Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis[J]. Journal of Hydrology, 2008, 349(3-4): 350-363.
doi: 10.1016/j.jhydrol.2007.11.009 |
[31] |
Yue S, Pilon P, Cavadias G. Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series[J]. Journal of Hydrology, 2002, 259(1): 254-271.
doi: 10.1016/S0022-1694(01)00594-7 |
[32] | 房世波. 分离趋势产量和气候产量的方法探讨[J]. 自然灾害学报, 2011, 20(6): 13-18. |
[Fang Shibo. Exploration of method for discrimination between trend crop yield and climatic fluctuant yield[J]. Journal of Natural Disasters, 2011, 20(6): 13-18.] | |
[33] | 骆玉川, 张朝, 张亮亮, 等. 冬小麦物候的时空变化模拟及其气候驱动因素解析——基于改进的pDSSAT模型[J]. 中国科学: 地球科学, 2022, 52(1): 126-143. |
[Luo Yuchuan, Zhang Chao, Zhang Liangliang, et al. Simulation of spatio-temporal variation of winter wheat phenology and analysis of climate driving factors based on improved pDSSAT model[J]. Scientia Sinica (Terrae), 2022, 52(1): 126-143.] | |
[34] | 曲俊杉, 洪明, 常浩, 等. 水氮供应对北疆春玉米产量、水氮利用及品质的影响[J]. 玉米科学, 2023, 31(2): 125-135. |
[Qu Junshan, Hong Ming, Chang Hao, et al. Effects of water and nitrogen supply on yield, water-nitrogen utilization and quality of spring maize in northern Xinjiang[J]. Journal of Maize Sciences, 2023, 31(2): 125-135.] | |
[35] | 唐霞, 崔建垣, 曲浩, 等. 风对科尔沁地区几种常见作物幼苗光合、蒸腾特性的影响[J]. 生态学杂志, 2011, 30(3): 471-476. |
[Tang Xia, Cui Jianyuan, Qu Hao, et al. Impact of wind on seedling’s photosynthesis and transpiration of several common crops in Horqin Sandy Land[J]. Chinese Journal of Ecology, 2011, 30(3): 471-476.] | |
[36] | 王娇, 李萍, 宗毓铮, 等. 大气CO2浓度和气温升高对玉米灌浆期碳氮代谢的影响[J]. 中国生态农业学报(中英文), 2023, 31(2): 325-335. |
[Wang Jiao, Li Ping, Zong Yuzheng, et al. Effects of elevated atmospheric CO2 concentration and increased temperature on the metabolism of carbon and nitrogen of maize at grain filling stage[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 325-335.] | |
[37] | 肖让, 康永德, 张永玲, 等. 河西走廊制种玉米不同施肥与灌溉定额优化研究[J]. 节水灌溉, 2021(12): 30-37. |
[Xiao Rang, Kang Yongde, Zhang Yongling, et al. Optimization of different fertilization and irrigation quota for seed maize production in Hexi Corridor[J]. Water Saving Irrigation, 2021(12): 30-37.] | |
[38] | 付江鹏, 贺正, 贾彪, 等. 滴灌施氮水平下玉米籽粒灌浆过程模拟[J]. 中国土壤与肥料, 2020(4): 157-164. |
[Fu Jiangpeng, He Zheng, Jia Biao, et al. Simulation of maize grain filling process under nitrogen drip irrigation[J]. Soil and Fertilizer Sciences in China, 2020(4): 157-164.] | |
[39] | 李宗南. 基于光能利用率模型和定量遥感的玉米生长监测方法研究[D]. 北京: 中国农业科学院, 2014. |
[Li Zongnan. Research on method of maize growth monitoring using light use efficiency model and quantitative remote sensing[D]. Beijing: Chinese Academy of Agricultural, 2014.] | |
[40] | 杜江涛, 张楠, 龚珂宁, 等. 基于DSSAT模型的南疆膜下滴灌棉花灌溉制度优化[J]. 生态学杂志, 2021, 40(11): 3760-3768. |
[Du Jiangtao, Zhang Nan, Gong Ke’ning, et al. Optimization of cotton irrigation schedule under mulch drip irrigation in southern Xinjiang based on DSSAT model[J]. Chinese Journal of Ecology, 2021, 40(11): 3760-3768.] | |
[41] | 李彤霄, 刘佳, 李聪, 等. 基于大豆观测数据的DSSAT和WOFOST模型模拟比较研究[J]. 气象与环境科学, 2021, 44(2): 9-15. |
[Li Tongxiao, Liu Jia, Li Cong, et al. Comparative study of DSSAT and WOFOST models based on soybean observation data[J]. Meteorological and Environmental Sciences, 2021, 44(2): 9-15.] | |
[42] |
王文佳, 冯浩. 基于CROPWAT-DSSAT关中地区冬小麦需水规律及灌溉制度研究[J]. 中国生态农业学报, 2012, 20(6): 795-802.
doi: 10.3724/SP.J.1011.2012.00795 |
[Wang Wenjia, Feng Hao. Water requirement and irrigation systems of winter wheat: CROPWAT-DSSAT model solution in Guanzhong district[J]. Chinese Journal of Eco-Agriculture, 2012, 20(6): 795-802.]
doi: 10.3724/SP.J.1011.2012.00795 |
|
[43] | 玉门市统计局. 玉门市国民经济和社会发展统计公报[R]. 玉门: 玉门市统计局, 1990—2020. |
[Yumen Municipal Bureau of Statistics. Statistical bulletin of Yumen national economic and social development[R]. Yumen: Yumen Municipal Bureau of Statistics, 1990—2020.] | |
[44] | 程志强, 蒙继华. 作物单产估算模型研究进展与展望[J]. 中国生态农业学报, 2015, 23(4): 402-415. |
[Cheng Zhiqiang, Meng Jihua. Research advances and perspectives on crop yield estimation models[J]. Chinese Journal of Eco-Agriculture, 2015, 23(4): 402-415.] | |
[45] | 赵俊芳, 李宁, 候英雨, 等. 基于APSIM模型评估北方八省春玉米生产对气候变化的响应[J]. 中国农业气象, 2018, 39(2): 108-118. |
[Zhao Junfang, Li Ning, Hou Yingyu, et al. Evaluation of response of spring maize production to climate change in the eight provinces of northern China based on APSIM model[J]. Chinese Journal of Agrometeorology, 2018, 39(2): 108-118.] | |
[46] | 杜桂娟, 曹敏建, 马凤江, 等. 播期对下茬青贮玉米物质生产特性的影响及气象条件分析[J]. 作物杂志, 2009(2): 36-40. |
[Du Guijuan, Cao Minjian, Ma Fengjiang, et al. Influence of sowing date on production characteristics of silage corn for the aftercrop and analysis of meteorological conditions[J]. Crops, 2009(2): 36-40.] | |
[47] | 杨德光, 孙玉珺, Ali Raza Irfan, 等. 低温胁迫对玉米发芽及幼苗生理特性的影响[J]. 东北农业大学学报, 2018, 49(5): 1-8, 44. |
[Yang Deguang, Sun Yujun, Ali Raza Irfan, et al. Effect of low temperature stress on germination and physiological of maize seedling[J]. Journal of Northeast Agricultural University, 2018, 49(5): 1-8, 44.] | |
[48] | 陈文婷, 周曙东. 不同生长阶段降水对夏玉米产出的影响[J]. 华南农业大学学报(社会科学版), 2022, 21(4): 91-103. |
[Chen Wenting, Zhou Shudong. Impact of precipitation at different growth stages on summer maize yield[J]. Journal of South China Agricultural University (Social Science Edition), 2022, 21(4): 91-103.] | |
[49] | 杨笛, 熊伟, 许吟隆, 等. 气候变化背景下中国玉米单产增速减缓的原因分析[J]. 农业工程学报, 2017, 33(增刊1): 231-238. |
[Yang Di, Xiong Wei, Xu Yinlong, et al. Analysis of reason for recent slowing maize yield increase under climate change in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(Suppl. 1): 231-238.] | |
[50] | 徐晨, 闫伟平, 孙宁, 等. 不同灌水处理对春玉米生理特性的影响[J]. 灌溉排水学报, 2021, 40(1): 7-14. |
[Xu Chen, Yan Weiping, Sun Ning, et al. The impacts of irrigation amount on physiological characteristics and yield of spring maize[J]. Journal of Irrigation and Drainage, 2021, 40(1): 7-14.] | |
[51] | 帅艳民, 武梦瑾, 吴昊, 等. 东北春玉米全生育期气候适宜度评价[J]. 干旱地区农业研究, 2022, 40(3): 238-247. |
[Shuai Yanmin, Wu Mengjin, Wu Hao, et al. Evaluation of climate suitability of spring maize during the whole growth period in northeast China[J]. Agricultural Research in the Arid Areas, 2022, 40(3): 238-247.] | |
[52] |
王钧, 李广, 闫丽娟, 等. 气候变化背景下甘肃农牧交错带玉米气候生产潜力和资源利用效率变化特征[J]. 应用生态学报, 2023, 34(1): 160-168.
doi: 10.13287/j.1001-9332.202301.023 |
[Wang Jun, Li Guang, Yan Lijuan, et al. Variation characteristics of climatic potential yield and resources utilization efficiency of maize in agro-pastoral transitional zone of Gansu, China under the background of climate change[J]. Chinese Journal of Applied Ecology, 2023, 34(1): 160-168.]
doi: 10.13287/j.1001-9332.202301.023 |
|
[53] | 贾国燏, 骆洪义, 褚屿, 等. 不同灌溉方式下水肥一体化对玉米养分吸收规律的影响[J]. 节水灌溉, 2022(2): 40-47. |
[Jia Guoyu, Luo Hongyi, Chu Yu, et al. Effects of water and fertilizer integration on nutrient absorption of maize under different irrigation modes[J]. Water Saving Irrigation, 2022(2): 40-47.] |
[1] | 朱磊, 王科, 丁一民, 孙振源, 孙伯颜. 基于Sentinel-2的青铜峡灌区水稻和玉米种植分布早期识别[J]. 干旱区地理, 2024, 47(5): 850-860. |
[2] | 高彦婷, 张芮, 董博, 李青青, 刘柯含. 垄沟覆盖集雨模式对玉米根际土壤微生物多样性的影响[J]. 干旱区地理, 2024, 47(3): 413-423. |
[3] | 蔺阿荣, 周冬梅, 马静, 朱小燕, 江晶, 张军. 基于RWEQ模型的疏勒河流域防风固沙功能价值评估[J]. 干旱区地理, 2024, 47(1): 58-67. |
[4] | 李诗瑶, 丛士翔, 王融融, 余海龙, 黄菊莹. 基于无人机多光谱遥感的干旱胁迫下玉米冠层SPAD值监测[J]. 干旱区地理, 2023, 46(7): 1121-1132. |
[5] | 杨静, 周冬梅, 马静, 朱小燕, 金银丽, 周凡, 张军. 疏勒河流域农业水土资源时空匹配特征分析[J]. 干旱区地理, 2023, 46(6): 982-992. |
[6] | 孔德明, 郝丽莎, 夏四友, 李红波. 粮食单产视角下中国北方农牧交错带粮食安全研究[J]. 干旱区地理, 2023, 46(5): 782-792. |
[7] | 周凡,周冬梅,金银丽,马静,杨静,朱小燕,张军. 疏勒河流域生态系统服务供需空间匹配特征[J]. 干旱区地理, 2023, 46(3): 471-480. |
[8] | 王飞,郭树江,纪永福,张莹花,韩福贵,张裕年,张卫星,宋达成. 不同演替阶段白刺灌丛沙堆土壤因子与叶功能性状关系研究[J]. 干旱区地理, 2022, 45(1): 176-184. |
[9] | 孙丽蓉,周冬梅,岑国璋,马静,党锐,倪帆,张军. 基于地理探测器模型的疏勒河流域景观生态风险评价及驱动因素分析[J]. 干旱区地理, 2021, 44(5): 1384-1395. |
[10] | 郑续, 魏乐民, 郭建军, 周妍妍, 陈冠光, 岳东霞 . 基于地理探测器的干旱区内陆河流域产水量驱动力分析 ——以疏勒河流域为例[J]. 干旱区地理, 2020, 43(6): 1477-1485. |
[11] | 吕青松, 辛存林, 王瑞, 张勃, 张华. 1966—2018年河西走廊春季寒潮频次及影响因子分析[J]. 干旱区地理, 2020, 43(4): 946-954. |
[12] | 宁亚洲, 张福平, 冯起, 魏永芬, 李玲, 刘洁遥, 曾攀儒. 基于SEBAL模型的疏勒河流域蒸散发估算与灌溉效率评价[J]. 干旱区地理, 2020, 43(4): 928-938. |
[13] | 罗瑶, 彭文甫, 董永波, 罗艳玫, 张冬梅. 基于地理探测器下的川西高原地表温度空间格局及影响因子分析——以西昌市为例[J]. 干旱区地理, 2020, 43(3): 738-749. |
[14] | 王芳莉, 党国锋. 近25 a甘肃省人口分布的时空格局及影响因素 [J]. 干旱区地理, 2020, 43(2): 508-515. |
[15] | 景悦, 孙艳玲, 高爽, 陈莉, 潘隆, 马含. 京津冀地区AOD时空变化及影响因子的地理探测[J]. 干旱区地理, 2020, 43(1): 87-98. |
|