干旱区地理 ›› 2023, Vol. 46 ›› Issue (9): 1467-1480.doi: 10.12118/j.issn.1000-6060.2022.499 cstr: 32274.14.ALG2022499
王鑫1,2,3(),靳正忠1,2(
),施建飞1,2,3,杨小亮1,2,3,徐新文1,2
收稿日期:
2022-10-01
修回日期:
2022-11-21
出版日期:
2023-09-25
发布日期:
2023-09-28
作者简介:
王鑫(1998-),男,硕士研究生,主要从事荒漠化防治研究. E-mail: 基金资助:
WANG Xin1,2,3(),JIN Zhengzhong1,2(
),SHI Jianfei1,2,3,YANG Xiaoliang1,2,3,XU Xinwen1,2
Received:
2022-10-01
Revised:
2022-11-21
Published:
2023-09-25
Online:
2023-09-28
摘要:
覆盖会影响尾矿水、热分布,研究植物纤维毯覆盖对尾矿砂水热分布的影响,对微生物诱导碳酸钙沉淀(Microbial induced calcite precipitation,MICP)技术控制尾矿污染扩散过程中调控水热条件具有实际意义。于2022年夏季在中国科学院新疆生态与地理研究所莫索湾沙漠研究站,布设基于不同材料(黄麻、稻草、椰丝和棕榈)、不同规格(300 g·m-2、500 g·m-2、700 g·m-2和900 g·m-2)的植物纤维毯覆盖于尾矿砂的田间模拟试验,通过测定尾矿砂温度、含水率与蒸发量变化,探究植物纤维毯覆盖对尾矿砂水热分布的影响。结果表明:(1) 植物纤维毯覆盖能降低0~20 cm尾矿砂温度、减小日温差及日变化幅度,其中900 g·m-2的稻草纤维毯(D9)降温作用最强,日变化幅度最小。(2) 植物纤维毯覆盖能改善0~30 cm尾矿砂的保水性,减少水分蒸发损失。(3) 植物纤维毯覆盖能抑制尾矿砂水分蒸发,试验结束时,相同规格下累积蒸发抑制效率除D9略大于900 g·m-2的黄麻纤维毯(H9)外,均表现为:黄麻>稻草>棕榈>椰丝,且均随规格增大而增大,其中D9抑制蒸发效率高达71.3%。(4) 植物纤维毯覆盖干旱区尾矿砂的最佳节水降温方案为D9。综上所述,植物纤维毯覆盖能有效节水降温,研究结果可为干旱区应用MICP技术控制尾矿污染扩散过程中调控水热条件提供理论支撑。
王鑫, 靳正忠, 施建飞, 杨小亮, 徐新文. 植物纤维毯覆盖对干旱区尾矿砂水热分布的影响[J]. 干旱区地理, 2023, 46(9): 1467-1480.
WANG Xin, JIN Zhengzhong, SHI Jianfei, YANG Xiaoliang, XU Xinwen. Effect of plant fiber blanket cover on hydrothermal distribution of tailing sand in arid area[J]. Arid Land Geography, 2023, 46(9): 1467-1480.
表1
覆盖处理类型及覆盖物基本性质"
覆盖类型 | 规格/g·m-2 | 处理 | 厚度/mm | 覆盖物组成 |
---|---|---|---|---|
黄麻纤维毯 | 300 | H3 | 2.7±0.2 | 由上下2层固定网(PP网)夹持黄麻纤维层并缝合形成的毯状物 |
500 | H5 | 4.4±0.3 | ||
700 | H7 | 6.1±0.4 | ||
900 | H9 | 8.2±0.4 | ||
稻草纤维毯 | 300 | D3 | 2.8±0.2 | 由上下2层固定网(PP网)夹持稻草纤维层并缝合形成的毯状物 |
500 | D5 | 5.0±0.2 | ||
700 | D7 | 7.1±0.2 | ||
900 | D9 | 10.0±0.5 | ||
椰丝纤维毯 | 300 | Y3 | 2.5±0.2 | 由上下2层固定网(PP网)夹持椰丝纤维层并缝合形成的毯状物 |
500 | Y5 | 4.1±0.1 | ||
700 | Y7 | 5.6±0.4 | ||
900 | Y9 | 6.9±0.1 | ||
棕榈纤维毯 | 300 | Z3 | 2.6±0.3 | 由上下2层固定网(PP网)夹持棕榈纤维层并缝合形成的毯状物 |
500 | Z5 | 3.9±0.5 | ||
700 | Z7 | 5.8±0.1 | ||
900 | Z9 | 7.2±0.1 | ||
无覆盖 | - | CK | - | - |
表2
不同植物纤维毯覆盖下 0~30 cm平均尾矿砂体积含水率"
处理 | 蒸发时间 | |||||
---|---|---|---|---|---|---|
0 d | 3 d | 6 d | 9 d | 12 d | 15 d | |
H3 | 28.00±0.13Ccd | 28.49±2.51Cc | 25.43±0.36Bc | 24.73±0.24Bc | 20.66±0.68Ac | 19.26±0.37Ad |
H5 | 30.09±0.48Ee | 26.10±0.59Ca | 27.36±0.09De | 25.61±0.51Cd | 23.73±0.22Be | 22.70±0.28Agh |
H7 | 27.35±0.05Dbc | 28.46±0.23Ec | 27.64±0.05Def | 25.56±0.38Cd | 23.97±0.63Be | 23.31±0.35Ah |
H9 | 31.03±0.25Df | 31.70±0.43Eef | 31.23±0.14Dj | 29.48±0.35Cg | 27.64±0.36Bh | 26.77±0.45Aj |
D3 | 28.38±0.31Ed | 28.40±0.33Ec | 26.37±0.19Dd | 24.66±0.22Cc | 21.80±0.91Bd | 20.35±0.35Ae |
D5 | 28.46±0.03Dd | 30.12±0.20Ed | 27.82±0.64Defg | 26.90±0.48Ce | 23.96±0.26Be | 22.72±0.41Agh |
D7 | 32.31±0.23Eg | 32.30±0.37Ef | 31.05±0.31Dj | 29.57±0.27Cg | 26.46±0.34Ag | 27.62±0.51Bk |
D9 | 31.83±0.12Ffg | 25.83±0.15Aa | 30.24±0.44Ei | 29.52±0.32Dg | 28.47±0.26Ci | 26.37±0.38Bj |
Y3 | 31.20±0.15Ef | 32.26±0.74Ff | 28.15±0.39Dfgh | 27.19±0.05Ce | 23.58±0.10Be | 21.91±0.10Af |
Y5 | 29.40±0.10De | 30.18±0.45Dd | 26.61±0.22Cd | 26.15±0.35Cd | 24.90±0.30Bf | 22.04±0.85Afg |
Y7 | 31.83±0.20Ffg | 31.01±0.31Ede | 30.17±0.30Di | 28.21±0.07Cf | 26.60±0.21Bg | 24.50±0.32Ai |
Y9 | 31.17±0.77Ef | 30.19±0.13Dd | 28.29±0.09Cgh | 27.07±0.25Be | 26.53±0.58Bg | 24.20±0.47Ai |
Z3 | 26.85±0.48Eab | 26.34±0.10Eab | 23.79±0.24Db | 22.33±0.60Cb | 18.90±0.27Bb | 16.23±0.44Ab |
Z5 | 26.24±0.13Ea | 30.38±0.27Fd | 22.89±0.67Da | 21.17±0.54Ca | 18.49±0.28Bb | 17.08±0.46Ac |
Z7 | 29.34±0.07De | 27.67±0.14Cc | 26.28±0.29Bd | 26.02±0.93Bd | 23.47±0.40Ae | 22.77±0.18Agh |
Z9 | 34.43±0.38Fh | 32.12±0.16Eef | 28.73±0.43Ch | 31.34±0.05Dh | 26.59±0.35Bg | 24.85±0.38Ai |
CK | 31.12±1.27Ff | 27.41±0.19Ebc | 23.78±0.39Db | 20.67±0.17Ca | 16.85±0.06Ba | 13.59±0.17Aa |
表3
不同植物纤维毯覆盖下尾矿砂累积蒸发量与时间的拟合参数"
处理 | W=atb | W=aebt | W=alnt+b | W=at+b | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | R2 | a | b | R2 | a | b | R2 | a | b | R2 | ||||
H3 | 3.107 | 0.949 | 0.999 | 5.204 | 0.156 | 0.885 | 14.447 | -4.700 | 0.884 | 2.685 | 0.688 | 0.999 | |||
H5 | 2.922 | 0.909 | 0.999 | 4.742 | 0.151 | 0.899 | 12.264 | -3.679 | 0.880 | 2.285 | 0.851 | 0.999 | |||
H7 | 2.776 | 0.814 | 0.994 | 4.217 | 0.137 | 0.921 | 8.972 | -1.900 | 0.867 | 1.681 | 1.337 | 0.996 | |||
H9 | 1.895 | 0.955 | 0.997 | 3.206 | 0.156 | 0.874 | 8.917 | -2.890 | 0.873 | 1.665 | 0.379 | 0.995 | |||
D3 | 2.983 | 1.015 | 0.997 | 5.269 | 0.165 | 0.860 | 16.407 | -5.948 | 0.886 | 3.047 | 0.195 | 0.999 | |||
D5 | 2.413 | 1.010 | 0.998 | 4.230 | 0.165 | 0.867 | 13.177 | -4.829 | 0.880 | 2.455 | 0.039 | 0.999 | |||
D7 | 2.145 | 0.996 | 0.997 | 3.739 | 0.162 | 0.864 | 11.220 | -3.927 | 0.882 | 2.087 | 0.248 | 0.998 | |||
D9 | 1.856 | 0.976 | 0.996 | 3.220 | 0.158 | 0.854 | 9.079 | -2.886 | 0.896 | 1.675 | 0.604 | 0.996 | |||
Y3 | 4..562 | 0.931 | 0.999 | 7.659 | 0.152 | 0.867 | 19.838 | -5.668 | 0.901 | 3.650 | 2.027 | 0.997 | |||
Y5 | 2.760 | 1.028 | 0.997 | 4.932 | 0.166 | 0.855 | 15.661 | -5.744 | 0.889 | 2.902 | 0.166 | 0.999 | |||
Y7 | 2.958 | 0.979 | 0.997 | 5.123 | 0.159 | 0.860 | 14.690 | -4.826 | 0.890 | 2.720 | 0.736 | 0.998 | |||
Y9 | 2.852 | 0.983 | 0.997 | 4.976 | 0.159 | 0.852 | 14.199 | -4.565 | 0.901 | 2.613 | 0.493 | 0.998 | |||
Z3 | 3.857 | 0.943 | 0.998 | 6.544 | 0.153 | 0.861 | 17.231 | -4.995 | 0.903 | 3.165 | 1.735 | 0.997 | |||
Z5 | 3.614 | 0.886 | 0.997 | 5.918 | 0.144 | 0.865 | 13.767 | -3.237 | 0.899 | 2.534 | 2.102 | 0.996 | |||
Z7 | 3.392 | 0.885 | 0.996 | 5.575 | 0.144 | 0.859 | 12.837 | -2.915 | 0.903 | 2.357 | 2.110 | 0.995 | |||
Z9 | 3.274 | 0.868 | 0.992 | 5.408 | 0.139 | 0.833 | 11.494 | -1.982 | 0.928 | 2.076 | 2.789 | 0.991 | |||
CK | 6.653 | 0.987 | 0.999 | 11.522 | 0.161 | 0.870 | 33.909 | -11.511 | 0.900 | 6.232 | 1.703 | 0.994 |
[1] | 张越男. 大宝山尾矿库区地下水重金属污染特征及健康风险研究[D]. 长沙: 湖南大学, 2013. |
[Zhang Yuenan. The polluion characteristics and assessment of health risk from heavy metals in groundwater of Dabaoshan tailing zone, Guangdong Province, China[D]. Changsha: Hunan University, 2013.] | |
[2] | 王海涛, 田玮, 岳昌盛, 等. 金属尾矿土壤重金属污染及修复技术研究现状[J]. 中国资源综合利用, 2022, 40(5): 127-131. |
[Wang Haitao, Tian Wei, Yue Changsheng, et al. Research status of heavy metal pollution and remediation technology in metal tailings soil[J]. China Resources Comprehensive Utilization, 2022, 40(5): 127-131.] | |
[3] | 赵庆龄, 张乃弟, 路文如. 土壤重金属污染研究回顾与展望Ⅱ——基于三大学科的研究热点与前沿分析[J]. 环境科学与技术, 2010, 33(7): 102-106, 137. |
[Zhao Qingling, Zhang Naidi, Lu Wenru. Research review and prospect on soil heavy metals pollution Ⅱ: Research focus and analysis based on three major disciplines[J]. Environmental Science & Technology, 2010, 33(7): 102-106, 137.] | |
[4] | Kang B, Zha F S, Deng W H, et al. Biocementation of pyrite tailings using microbially induced calcite carbonate precipitation[J]. Molecules, 2022, 27(11): 3608, doi: 10.3390/molecules27113608. |
[5] | He Z F, Xu Y T, Yang X L, et al. Passivation of heavy metals in copper-nickel tailings by in-situ bio-mineralization: A pilot trial and mechanistic analysis[J]. The Science of the Total Environment, 2022, 838(Pt4): 156504, doi: 10.1016/j.scitotenv.2022.156504. |
[6] | 肖海, 胡欢, 吕广柳, 等. 微生物诱导碳酸钙沉淀影响因素研究进展分析[J]. 三峡大学学报(自然科学版), 2022, 44(6): 66-75. |
[Xiao Hai, Hu Huan, Lü Guangliu, et al. Research progresson factors of microbial induced calcium carbonate precipitation[J]. Journal of China Three Gorges University (Natural Sciences Edition), 2022, 44(6): 66-75.] | |
[7] | Hu X D, Fu X Z, Pan P, et al. Incorporation of mixing microbial induced calcite precipitation (MICP) with pretreatment procedure for road soil subgrade stabilization[J]. Materials, 2022, 15(19): 6529, doi: 10.3390/ma15196529. |
[8] |
Hejazi S M, Sheikhzadeh M, Abtahi S M, et al. A simple review of soil reinforcement by using natural and synthetic fibers[J]. Construction and Building Materials, 2012, 30: 100-116.
doi: 10.1016/j.conbuildmat.2011.11.045 |
[9] | 王平, 陈娟, 谢成俊, 等. 干旱地区覆盖方式对土壤养分及马铃薯产量的影响[J]. 中国土壤与肥料, 2021(4): 118-125. |
[Wang Ping, Chen Juan, Xie Chengjun, et al. Effects of different covering modes on soil nutrient and potato (Solanum tuberosum L.) yield in arid areas[J]. Soils and Fertilizers Sciences in China, 2021(4): 118-125.] | |
[10] |
吕剑, 李金武, 郁继华, 等. 不同地表覆盖方式对松花菜土壤温度、产量和水分利用的影响[J]. 核农学报, 2021, 35(8): 1941-1951.
doi: 10.11869/j.issn.100-8551.2021.08.1941 |
[Lü Jian, Li Jinwu, Yu Jihua, et al. Effects of different surface covering methods on soil temperature, yeild and water utilization of loose-curd cauliflower (Brassica oleracea var. botrytis L.)[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(8): 1941-1951.]
doi: 10.11869/j.issn.100-8551.2021.08.1941 |
|
[11] | 李宏钧, 孔亚平, 张岩. 植物纤维毯生态防护效益研究述评[J]. 中国水土保持科学, 2016, 14(3): 146-154. |
[Li Hongjun, Kong Yaping, Zhang Yan. A review of geotextiles ecological protection technology[J]. Science of Soil and Water Conservation, 2016, 14(3): 146-154.] | |
[12] | 陈学平, 简丽, 贾献卓, 等. 植物纤维毯覆盖对公路边坡植被重建的影响[J]. 公路交通科技, 2017, 34(2): 143-148. |
[Chen Xueping, Jian Li, Jia Xianzhuo, et al. Effect of plant fiber blanket coverage on revegetation of highway side slope[J]. Journal of Highway and Transportation Research and Development, 2017, 34(2): 143-148.] | |
[13] |
Jankauskas B, Jankauskiene G, Fullen M A. Soil conservation on road embankments using palm-mat geotextiles: Field studies in Lithuania[J]. Soil Use and Management, 2012, 28(2): 266-275.
doi: 10.1111/sum.2012.28.issue-2 |
[14] | 张梅花. 生态垫覆盖对沙丘土壤水分及荒漠灌木生长的影响[J]. 水利规划与设计, 2019(4): 68-71. |
[Zhang Meihua. Effects of eco-mat mulching on soil moisture and desert shrub growth in dune[J]. Water Resources Planning and Design, 2019(4): 68-71.] | |
[15] | 杨晓晖, 于春堂, 秦永胜. 流动沙丘上生态垫防风固沙效果初步评价[J]. 生态环境, 2007, 16(3): 964-967. |
[Yang Xiaohui, Yu Chuntang, Qin Yongsheng. A preliminary evaluation of ecomat function on windbreak and sand-fixation in mobile sand dune[J]. Ecology and Environment, 2007, 16(3): 964-967.] | |
[16] |
张利, 罗麟, 朱欣伟, 等. 生态毯对川西北流动沙地生态恢复的影响[J]. 草地学报, 2017, 25(5): 1156-1159.
doi: 10.11733/j.issn.1007-0435.2017.05.034 |
[Zhang Li, Luo Lin, Zhu Xinwei, et al. Effect of eco-mat on ecological restoration in shifting sandy land of northwest Sichuan[J]. Acta Agrestia Sinica, 2017, 25(5): 1156-1159.]
doi: 10.11733/j.issn.1007-0435.2017.05.034 |
|
[17] | 刘平, 马履一, 郝亦荣. 生态垫对河滩造林地土壤温湿度和杂草的影响[J]. 中国水土保持科学, 2005, 3(1): 77-81. |
[Liu Ping, Ma Lüyi, Hao Yirong. Effect of eco-mat on soil temperature and water content and weed of afforestation in river-beach[J]. Science of Soil and Water Conservation, 2005, 3(1): 77-81.] | |
[18] | 高甲荣, 孙保平, 王淑琴, 等. 可降解生态垫在河滩地造林中抑制杂草的效果[J]. 中国水土保持科学, 2004, 2(1): 38-41. |
[Gao Jiarong, Sun Baoping, Wang Shuqin, et al. Weed controlling effect of degradable ecomat in river-beach afforestation[J]. Science of Soil and Water Conservation, 2004, 2(1): 38-41.] | |
[19] | 张平, 王树森, 马迎梅, 等. 黄土丘陵沟壑区不同草本植物生长期植物纤维毯对沟道边坡产流产沙的影响[J]. 水土保持学报, 2020, 34(5): 49-55. |
[Zhang Ping, Wang Shusen, Ma Yingmei, et al. Effects of plant fiber blankets of different herbaceous plant growth stages on runoff and sediment yield in the loess hilly and gully region[J]. Journal of Soil and Water Conservation, 2020, 34(5): 49-55.] | |
[20] | 肖兴富, 李文奇, 常佩丽, 等. 棕榈纤维垫法恢复水库岸边植被施工技术[J]. 南水北调与水利科技, 2005, 3(4): 26-28. |
[Xiao Xingfu, Li Wenqi, Chang Peili, et al. Technique of macrophyte in littoral zone by palm mat with interpolatory sallow[J]. South-to-North Water Transfers and Water Science & Technology, 2005, 3(4): 26-28.] | |
[21] | 于丹丹, 贾黎明, 贾忠奎, 等. 生态垫及保水剂对废弃砂石坑立地造林的影响[J]. 南京林业大学学报(自然科学版), 2015, 39(6): 99-104. |
[Yu Dandan, Jia Liming, Jia Zhongkui, et al. Effects of eco-mat and super absorbent polymers on forest in waste sand and gravel pit sites[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2015, 39(6): 99-104.] | |
[22] | 王珍珍, 周长泉, 许建堂. 基于不同覆盖厚度的景泰县土壤水分蒸发研究[J]. 甘肃科技, 2018, 34(15): 30-32, 73. |
[Wang Zhenzhen, Zhou Changquan, Xu Jiantang. Soil water evaporation in Jingtai County based on different cover thickness[J]. Gansu Science and Technology, 2018, 34(15): 30-32, 73.] | |
[23] | 蒋文君, 康银红, 陈瑶, 等. 不同覆盖方式对土壤水热分布的影响[J]. 土壤通报, 2022, 53(1): 74-80. |
[Jiang Wenjun, Kang Yinhong, Chen Yao, et al. The influence of different mulching methods on the distribution of soil water and heat[J]. Chinese Journal of Soil Science, 2022, 53(1): 74-80.] | |
[24] | 肖美珊. 土壤检验技术[M]. 北京: 化学工业出版社, 2011: 147-150. |
[Xiao Meishan. Soil inspection technique[M]. Beijing: Chemical Industry Press, 2011: 147-150.] | |
[25] | 王晓燕, 陈洪松, 王克林. 红壤坡地不同土地利用方式土壤蒸发和植被蒸腾规律研究[J]. 农业工程学报, 2007, 23(12): 41-45. |
[Wang Xiaoyan, Chen Hongsong, Wang Kelin. Rules of soil evaporation and plant transpiration under different land use patterns in the sloping land of red soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(12): 41-45.] | |
[26] | 张建国, 李红伟, 李雅菲, 等. 土壤盐结皮人工培育及其破损程度对土壤蒸发的影响[J]. 农业工程学报, 2019, 35(13): 138-144. |
[Zhang Jianguo, Li Hongwei, Li Yafei, et al. Artificial cultivation of soil salt crust and effects of its damage rate on soil evaporation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(13): 138-144.] | |
[27] | 唐洋, 李新虎, 郭敏, 等. 不同初始盐分浓度下土壤盐结皮的形成过程及其对蒸发的影响机理[J]. 干旱区地理, 2022, 45(4): 1137-1145. |
[Tang Yang, Li Xinhu, Guo Min, et al. Formation process of soil salt crust and its influence mechanism on evaporation under different initial salt concentrations[J]. Arid Land Geography, 2022, 45(4): 1137-1145.] | |
[28] | 张建生, 张梅花, 李庆会, 等. 生态垫覆盖对沙漠土壤水分和温度的影响[J]. 中国沙漠, 2008, 28(2): 280-283. |
[Zhang Jiansheng, Zhang Meihua, Li Qinghui, et al. Effects of eco-mat mulch on soil temperature and water content in desert[J]. Journal of Desert Research, 2008, 28(2): 280-283.] | |
[29] | 杨越, 曹波, 孙保平, 等. 生态垫对流动沙地土壤温湿度和养分的影响[J]. 水土保持研究, 2008, 15(3): 81-83, 87. |
[Yang Yue, Cao Bo, Sun Baoping, et al. Effect of eco-mat on soil temperature and moisture and soil nutrient in drifting sand land[J]. Research of Soil and Water Conservation, 2008, 15(3): 81-83, 87.] | |
[30] | 李宏钧, 孔亚平, 张岩, 等. 植物纤维毯对道路边坡微生境的影响[J]. 公路交通科技, 2016, 33(6): 146-151. |
[Li Hongjun, Kong Yaping, Zhang Yan, et al. Effect of geotextile on road slope microhabitat[J]. Journal of Highway and Transportation Research and Development, 2016, 33(6): 146-151.] | |
[31] | 马永财, 滕达, 衣淑娟, 等. 秸秆覆盖还田及腐解率对土壤温湿度与玉米产量的影响[J]. 农业机械学报, 2021, 52(10): 90-99. |
[Ma Yongcai, Teng Da, Yi Shujuan, et al. Effects of straw mulching and decomposition rate on soil temperature and humidity and maize yield[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(10): 90-99.] | |
[32] | 刘立豪, 王辉, 谭帅, 等. 不同覆盖方式对土壤水热及猕猴桃产量的影响[J]. 排灌机械工程学报, 2022, 40(2): 188-195. |
[Liu Lihao, Wang Hui, Tan Shuai, et al. Effects of different mulching patterns on soil moisture, soil temperature and yield of kiwifruit[J]. Journal of Drainage and Irrigation Machinery Engineering, 2022, 40(2): 188-195.] | |
[33] |
赵永敢, 逄焕成, 李玉义, 等. 秸秆隔层对盐碱土水盐运移及食葵光合特性的影响[J]. 生态学报, 2013, 33(17): 5153-5161.
doi: 10.5846/stxb |
[Zhao Yonggan, Pang Huancheng, Li Yuyi, et al. Effects of straw interlayer on soil water and salt movement and sunflower photosynthetic characteristics in saline-alkali soils[J]. Acta Ecologica Sinica, 2013, 33(17): 5153-5161.]
doi: 10.5846/stxb |
|
[34] | 王丽丽, 余海龙, 黄菊莹, 等. 不同覆盖措施的土壤生态环境效应和作物增产效应述评[J]. 江苏农业科学, 2016, 44(7): 11-15. |
[Wang Lili, Yu Hailong, Huang Juying, et al. Review on the effects of different mulching measures on soil ecological environment and crop yield[J]. Jiangsu Agricultural Sciences, 2016, 44(7): 11-15.] | |
[35] | 王佳欢, 杨新兵, 刘彦林, 等. 石灰岩弃渣与农田土复配土壤水分蒸发及覆盖物保水性能[J]. 水土保持学报, 2022, 36(5): 369-376. |
[Wang Jiahuan, Yang Xinbing, Liu Yanlin, et al. Water evaporation and mulch water retention of mixed soils with limestone waste residue and farmland soil[J]. Journal of Soil and Water Conservation, 2022, 36(5): 369-376.] | |
[36] | 孙博, 解建仓, 汪妮, 等. 不同秸秆覆盖量对盐渍土蒸发、水盐变化的影响[J]. 水土保持学报, 2012, 26(1): 246-250. |
[Sun Bo, Xie Jiancang, Wang Ni, et al. Effect of straw mulching on change of evaporation and water-salt in the saline soil[J]. Journal of Soil and Water Conservation, 2012, 26(1): 246-250.] |
[1] | 纪王迪, 黄晓军, 包微, 马耀壮. 关中地区人类活动强度与地表温度的时空关联特征及其驱动作用[J]. 干旱区地理, 2024, 47(6): 967-979. |
[2] | 王弘超, 李新虎, 郭敏, 李佳琳. 盐结皮土壤形成发育过程影响下的能量平衡动态变化[J]. 干旱区地理, 2024, 47(3): 424-432. |
[3] | 唐太斌, 周保, 金晓媚, 魏赛拉加, 马涛, 张永艳. 黄河源区夏季地表温度变化研究[J]. 干旱区地理, 2023, 46(8): 1250-1259. |
[4] | 康利刚, 曹生奎, 曹广超, 严莉, 陈链璇, 李文斌, 赵浩然. 青海湖流域地表温度时空变化特征研究[J]. 干旱区地理, 2023, 46(7): 1084-1097. |
[5] | 杜军,高佳佳,王挺,平措桑旦. 2007—2020年西藏草面温度时空分布特征[J]. 干旱区地理, 2022, 45(4): 1103-1113. |
[6] | 唐洋,李新虎,郭敏,王弘超. 不同初始盐分浓度下土壤盐结皮的形成过程及其对蒸发的影响机理[J]. 干旱区地理, 2022, 45(4): 1137-1145. |
[7] | 张博,李雪梅,秦启勇,李超,孙天瑶. 中国天山积雪垂直分布异质性研究[J]. 干旱区地理, 2022, 45(3): 754-762. |
[8] | 程丹妮,王颖琪,程勇翔,黄敬峰. 新疆典型沙漠和绿洲植被-水汽-地表温度相关性分析[J]. 干旱区地理, 2022, 45(2): 456-466. |
[9] | 王清平,秦贺,程海艳,张天成,陈春艳. 天山北坡中部一次短时暴雨的卫星反演云参数特征及成因分析[J]. 干旱区地理, 2021, 44(6): 1580-1589. |
[10] | 保广裕,杨春华,周丹,马守存,刘玮,燕振宁. 京藏高速柴达木腹地路面温度变化特征及与气温要素影响分析[J]. 干旱区地理, 2021, 44(5): 1213-1221. |
[11] | 王丽平,段四波,张霄羽,于艳茹. 2003-2018年中国地表温度年最大值的时空分布及变化特征[J]. 干旱区地理, 2021, 44(5): 1299-1308. |
[12] | 郝海超,郝兴明,成晓丽,张静静,范雪,李远航. 塔里木河下游输水对荒漠河岸林生态系统水分利用效率的影响[J]. 干旱区地理, 2021, 44(3): 691-699. |
[13] | 安彬,肖薇薇,张淑兰,朱妮,张建东. 1960—2017年黄土高原地表温度时空变化特征[J]. 干旱区地理, 2021, 44(3): 778-785. |
[14] | 高婧,李胜楠,井立红,毛炜峄,井立军. 新疆塔城地区极端气温变化特征及其影响因子分析[J]. 干旱区地理, 2021, 44(2): 346-359. |
[15] | 张翀,白子怡,李学梅,冉祺祺,韦振锋,雷田旺,王娜. 2001—2018年黄土高原植被覆盖人为影响时空演变及归因分析[J]. 干旱区地理, 2021, 44(1): 188-196. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 145
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 248
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|