[1] |
陶征广, 陶庭叶, 丁鑫, 等. 基于GRACE和GLDAS水文模型反演安徽省地下水储量变化[J]. 地球物理学进展, 2021, 36(4): 1456-1463.
|
|
[Tao Zhengguang, Tao Tingye, Ding Xin, et al. Groundwater storage changes in Anhui Province derived from GRACE and GLDAS hydrological model[J]. Progress in Geophysics, 2021, 36(4): 1456-1463.]
|
[2] |
涂梦昭, 刘志锋, 何春阳, 等. 基于GRACE卫星数据的中国地下水储量监测进展[J]. 地球科学进展, 2020, 35(6): 643-656.
doi: 10.11867/j.issn.1001-8166.2020.049
|
|
[Tu Mengzhao, Liu Zhifeng, He Chunyang, et al. Research progress of groundwater storage changes monitoring in China based on GRACE satellite data[J]. Advances in Earth Science, 2020, 35(6): 643-656.]
doi: 10.11867/j.issn.1001-8166.2020.049
|
[3] |
赵珍珍, 冯建迪. 基于多源数据的科尔沁沙地陆地水及地下水储量变化研究[J]. 水土保持通报, 2019, 39(3): 119-125, 131.
|
|
[Zhao Zhenzhen, Feng Jiandi. Investigation of water storage variation in Horqin Sandy Land based on multi-source data[J]. Bulletin of Soil and Water Conservation, 2019, 39(3): 119-125, 131.]
|
[4] |
Howard K W F. Sustainable cities and the groundwater governance challenge[J]. Environmental Earth Sciences, 2015, 73(6): 2543-2554.
doi: 10.1007/s12665-014-3370-y
|
[5] |
李嘉, 唐河, 饶维龙, 等. 南水北调工程对华北平原水储量变化的影响[J]. 中国科学院大学学报, 2020, 37(6): 775-783.
doi: 10.7523/j.issn.2095-6134.2020.06.008
|
|
[Li Jia, Tang He, Rao Weilong, et al. Influence of South-to-North Water Transfer Project on the changes of terrestrial water storage in North China Plain[J]. Journal of University of Chinese Academy of Sciences, 2020, 37(6): 775-783.]
doi: 10.7523/j.issn.2095-6134.2020.06.008
|
[6] |
Long D, Pan Y, Zhou J, et al. Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models[J]. Remote Sensing of Environment, 2017(192): 198-216.
|
[7] |
许厚泽. 卫星重力研究: 21世纪大地测量研究的新热点[J]. 测绘科学, 2001, 26(3): 1-3.
|
|
[Xu Houze. Satellite gravity missions: New hotpoint in geodesy[J]. Science of Surveying and Mapping, 2001, 26(3): 1-3.]
|
[8] |
陆大道, 孙东琪. 黄河流域的综合治理与可持续发展[J]. 地理学报, 2019, 74(12): 2431-2436.
doi: 10.11821/dlxb201912001
|
|
[Lu Dadao, Sun Dongqi. Comprehensive management and sustainable development of the Yellow River Basin[J]. Acta Geographica Sinica, 2019, 74(12): 2431-2436.]
doi: 10.11821/dlxb201912001
|
[9] |
宫辉力, 李小娟, 潘云, 等. 京津冀地下水消耗与区域地面沉降演化规律[J]. 中国科学基金, 2017, 31(1): 72-77.
|
|
[Gong Huili, Li Xiaojuan, Pan Yun, et al. Groundwater depletion and regional land subsidence of the Beijing-Tianjin-Hebei area[J]. Bulletin of National Natural Science Foundation of China, 2017, 31(1): 72-77.]
|
[10] |
杨阳. 关中地区地下水储量时空变化监测与分析[D]. 兰州: 兰州交通大学, 2017.
|
|
[Yang Yang. Monitoring and analysis of temporal and spatial variation of groundwater reserves in Guanzhong area[D]. Lanzhou: Lanzhou Jiaotong University, 2017.]
|
[11] |
胡鹏飞, 李净, 张彦丽, 等. 黄土高原水储量的时空变化及影响因素[J]. 遥感技术与应用, 2019, 34(1): 176-186.
|
|
[Hu Pengfei, Li Jing, Zhang Yanli, et al. Temporal and spatial variation and influencing factors of water storage on the Loess Plateau[J]. Remote Sensing Technology and Application, 2019, 34(1): 176-186.]
|
[12] |
徐子君, 尹立河, 胡伏生, 等. 2002—2015年西北地区陆地水储量时空变化特征[J]. 中国水利水电科学研究院学报, 2018, 16(4): 314-320.
|
|
[Xu Zijun, Yi Lihe, Hu Fusheng, et al. Spatial and temporal variations of terrestrial water storage in northwest China during 2002—2015[J]. Journal of China Institute of Water Resources and Hydropower Research, 2018, 16(4): 314-320.]
|
[13] |
曹艳萍, 南卓铜, 胡兴林. 利用GRACE重力卫星数据反演黑河流域地下水变化[J]. 冰川冻土, 2012, 34(3): 680-689.
|
|
[Cao Yanping, Nan Zhuotong, Hu Xinglin. Changes of groundwater storage in the Heihe River Basin derived from GRACE gravity satellite data[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 680-689.]
|
[14] |
Zhong Y, Zhong M, Feng W, et al. Groundwater depletion in the west Liaohe River Basin, China and its implications revealed by GRACE and in situ measurements[J]. Remote Sensing, 2018, 10(4): 493, doi: 10.3390/rs10040493.
doi: 10.3390/rs10040493
|
[15] |
张凯莉, 冯荣荣, 刘潭, 等. 黄河流域城市化与生态系统服务价值协调性及障碍因素研究[J]. 干旱区地理, 2022, 45(4): 1254-1267.
|
|
[Zhang Kaili, Feng Rongrong, Liu Tan, et al. Coordination and obstacle factors of urbanization and ecosystem service value in the Yellow River Basin[J]. Arid Land Geography, 2022, 45(4): 1254-1267.]
|
[16] |
袁磊, 韩双宝, 李甫成, 等. 黄河流域灌溉发展演变及对地下水资源的影响[J]. 人民黄河, 2022, 44(4): 80-84.
|
|
[Yuan Lei, Han Shuangbao, Li Fucheng, et al. Evolution of irrigation development in the Yellow River Basin and its impact on groundwater resources[J]. Yellow River, 2022, 44(4): 80-84.]
|
[17] |
Tapley B D, Bettadpur S, Ries J C, et al. GRACE measurements of mass variability in the earth system[J]. Science, 2004, 305(5683): 503-505.
doi: 10.1126/science.1099192
pmid: 15273390
|
[18] |
张亮林, 潘竟虎. 中国PM2.5人口暴露风险时空格局[J]. 中国环境科学, 2020, 40(1): 1-12.
|
|
[Zhang Lianglin, Pan Jinghu. Spatial-temporal pattern of population exposure risk to PM2.5 in China[J]. China Environmental Science, 2020, 40(1): 1-12.]
|
[19] |
王雪梅, 李新, 马明国. 基于遥感和GIS的人口数据空间化研究进展及案例分析[J]. 遥感技术与应用, 2004, 19(5): 320-327.
|
|
[Wang Xuemei, Li Xin, Ma Mingguo. Advance and case analysis of population spatial distribution based on remote sensing and GIS[J]. Remote Sensing Technology and Application, 2004, 19(5): 320-327.]
|
[20] |
Feng W, Zhong M, Lemoine J M, et al. Evaluation of groundwater depletion in north China using the gravity recovery and climate experiment (GRACE) data and ground-based measurements[J]. Water Resources Research, 2013, 49(4): 2110-2118.
doi: 10.1002/wrcr.20192
|
[21] |
Sen P K. Estimates of the regressions coefficient based on Kendall’s Tau[J]. Journal of the American Statistical Association, 1968, 63(324): 1379-1389.
doi: 10.1080/01621459.1968.10480934
|
[22] |
黄晓军, 祁明月, 李艳雨, 等. 关中地区PM2.5时空演化及人口暴露风险[J]. 环境科学, 2020, 41(12): 5245-5255.
doi: 10.1021/es070273v
|
|
[Huang Xiaojun, Qi Mingyue, Li Yanyu, et al. Spatio-temporal evolution and population exposure risk to PM2.5 in the Guanzhong area[J]. Environmental Science, 2020, 41(12): 5245-5255.]
doi: 10.1021/es070273v
|
[23] |
He C, Ma Q, Li T, et al. Spatiotemporal dynamics of electric power consumption in Chinese Mainland from 1995 to 2008 modeled using DMSP/OLS stable nighttime lights data[J]. Journal of Geographical Sciences, 2012, 22(1): 125-136.
doi: 10.1007/s11442-012-0916-3
|
[24] |
Zhou F, Bo Y, Ciais P, et al. Deceleration of China’s human water use and its key drivers[J]. Proceedings of the National Academy of Sciences, 2020, 117(14): 7702-7711.
doi: 10.1073/pnas.1909902117
|
[25] |
魏士禹, 郭云彤, 崔亚莉, 等. 1985—2016年民勤地下水位及储变量动态特征分析[J]. 干旱区地理, 2021, 44(5): 1272-1280.
|
|
[Wei Shiyu, Guo Yuntong, Cui Yali, et al. Dynamic characteristics of groundwater level and storage variables in Minqin from 1985 to 2016[J]. Arid Land Geography, 2021, 44(5): 1272-1280.]
|
[26] |
冯伟, 王长青, 穆大鹏, 等. 基于GRACE的空间约束方法监测华北平原地下水储量变化[J]. 地球物理学报, 2017, 60(5): 1630-1642.
|
|
[Feng Wei, Wang Changqing, Mu Dapeng, et al. Groundwater storage variations in the North China Plain from GRACE with spatial constraints[J]. Chinese Journal of Geophysics, 2017, 60(5): 1630-1642.]
|
[27] |
Yi S, Wang Q, Sun W. Basin mass dynamic changes in China from GRACE based on a multibasin inversion method[J]. Journal of Geophysical Research-Solid Earth, 2016, 121(5): 3782-3803.
doi: 10.1002/2015JB012608
|
[28] |
李婉秋, 王伟, 章传银, 等. 利用GRACE卫星重力数据监测关中地区地下水储量变化[J]. 地球物理学报, 2018, 61(6): 2237-2245.
|
|
[Li Wanqiu, Wang Wei, Zhang Chuanyin, et al. Monitoring groundwater storage variations in the Guanzhong area using GRACE satellite gravity data[J]. Chinese Journal of Geophysics, 2018, 61(6): 2237-2245.]
|
[29] |
陈永金, 艾克热木·阿布拉, 张天举, 等. 塔里木河下游生态输水对地下水埋深变化的影响[J]. 干旱区地理, 2021, 44(3): 651-658.
|
|
[Chen Yongjin, Abula Aikeremu, Zhang Tianju, et al. Effects of ecological water conveyance on groundwater depth in the lower reaches of Tarim River[J]. Arid Land Geography, 2021, 44(3): 651-658.]
|
[30] |
李杰, 范东明, 游为. 利用GRACE监测中国区域干旱及其影响因素分析[J]. 大地测量与地球动力学, 2019, 39(6): 587-595.
|
|
[Li Jie, Fan Dongming, You Wei. Using GRACE to monitor regional drought in China and its influencing factors[J]. Journal of Geodesy and Geodynamics, 2019, 39(6): 587-595.]
|
[31] |
孙倩, 阿丽亚·拜都热拉. 基于GRACE卫星和GLDAS系统的地下水水位估算模型——以和田地区克里雅河流域为例[J]. 地理科学进展, 2018, 37(7): 50-60.
|
|
[Sun Qian, Baidourela Aliya. Mathematical fitting of influencing factors and measured groundwater level: Take Keriya River Basin in Hetian area as an example[J]. Advances in Earth Science, 2018, 37(7): 50-60.]
|