干旱区地理 ›› 2026, Vol. 49 ›› Issue (1): 164-175.doi: 10.12118/j.issn.1000-6060.2025.109 cstr: 32274.14.ALG2025109
李玲燕1,2(
), 王萌萌1,2(
), 夏浩鸣1,2, 段蜜蜜1,2
收稿日期:2025-03-02
修回日期:2025-06-21
出版日期:2026-01-25
发布日期:2026-01-18
通讯作者:
王萌萌(2000-),女,硕士研究生,主要从事西北地区能源管理与区域可持续发展研究. E-mail: lwangmengmeng@xauat.edu.cn作者简介:李玲燕(1984-),女,博士,教授,主要从事能源管理与区域可持续发展研究. E-mail: lilingyan@xauat.edu.cn
基金资助:
LI Lingyan1,2(
), WANG Mengmeng1,2(
), XIA Haoming1,2, DUAN Mimi1,2
Received:2025-03-02
Revised:2025-06-21
Published:2026-01-25
Online:2026-01-18
摘要:
加快传统固态能源向清洁能源转型是生态脆弱区农村应对气候变化、强化环境治理和促进区域间可持续发展的必然选择,然而,在被动参与清洁能源改革政策时,中国西北生态脆弱区农户作为经济水平相对落后的群体,普遍存在现代清洁能源设备“改而未用”“基本不用”“低水平使用”的脆弱性现象。为此,采用能源转型的逆向思维,对陕西、甘肃、宁夏和青海地区13个县(区),包括180个村庄的2002户农户进行实地调研,建立“暴露度-敏感性-适应能力”模型综合评估农户清洁能源使用的脆弱性,并利用多元Logit回归模型从“经济-社会-家庭”3个层面分析脆弱性影响因素。结果表明:(1)中国西北生态脆弱区农户清洁能源使用的脆弱性处于低、中、高水平的占比分别为26.12%、46.55%、27.33%,且脆弱性空间异质性显著。(2)耕地面积、能源补贴政策、社会网络、年龄、生计类型、家庭规模等因素均显著影响脆弱性。(3)不同生态脆弱区脆弱性影响因素作用效果存在差异。为此,政府应基于不同生态脆弱区农户清洁能源使用的脆弱性特征,立足区域实际情况,实施差异化的能源补贴政策与推广模式等,以巩固清洁能源改革政策成果。
李玲燕, 王萌萌, 夏浩鸣, 段蜜蜜. 中国西北生态脆弱区农户清洁能源使用的脆弱性及影响因素[J]. 干旱区地理, 2026, 49(1): 164-175.
LI Lingyan, WANG Mengmeng, XIA Haoming, DUAN Mimi. Vulnerability and influencing factors of clean energy use of rural households in ecologically fragile areas of northwest China[J]. Arid Land Geography, 2026, 49(1): 164-175.
表1
农户清洁能源使用的脆弱性评价指标体系"
| 维度 | 一级指标层 | 二级指标层 | 赋值 | 方向 | 权重 |
|---|---|---|---|---|---|
| 暴露度 | 供暖成本 | 供暖成本增幅(E1) | “非常小”至“非常大”依次赋值1~5 | + | 0.031 |
| 能源易用性 | 能源获取便捷性(E2) | “非常便捷”至“非常不便捷”依次赋值1~5 | + | 0.032 | |
| 设备维护易操作性(E3) | “非常容易”至“非常不容易”依次赋值1~5 | + | 0.033 | ||
| 设备操作便捷性(E4) | “非常便捷”至“非常不便捷”依次赋值1~5 | + | 0.035 | ||
| 自然环境 | 温湿指数(E5) | 60~65=1(很舒适);56~60或65~70=2;50~56或70~75=3; 45~50或75~80=4;40~45或80~85=5;32~40或85~90=6; <32或>90=7(很不舒适) | + | 0.082 | |
| 植被覆盖率(E6) | >60%=1;45%~60%=2;30%~45%=3;<30%=4 | + | 0.068 | ||
| 敏感性 | 认知水平 | 受教育程度(S1) | 大专及以上=1;高中或中专技校=2;中学=3;小学及以下=4 | + | 0.006 |
| 生计类型(S2) | 务工或个体经营=1;务农兼务工=2;务农=3;失业=4 | + | 0.019 | ||
| 经济水平 | 家庭年总收入(S3) | 1×105元以上=1;5×104~1×105元=2; 3×104~5×104元=3; 1×104~3×104元=4; 1×104元以下=5 | + | 0.015 | |
| 家庭耕地面积(S4) | >0.40 hm2=1;0.20~0.40 hm2=2;0.10~0.20 hm2=3; 0.03~0.10 hm2=4;<0.03 hm2=5 | + | 0.113 | ||
| 房屋占地面积(S5) | >240 m2=1;160~240 m2=2;80~160 m2=3;30~80 m2=4;<30 m2=5 | + | 0.007 | ||
| 价格感知 | 设备价格接受度(S6) | “非常接受”至“非常不接受”依次赋值1~5 | + | 0.029 | |
| 设备维护费用接受度(S7) | “非常接受”至“非常不接受”依次赋值1~5 | + | 0.042 | ||
| 心理成本 | 传统能源改变难度(S8) | “非常小”至“非常大”依次赋值1~5 | + | 0.040 | |
| 能源转型感知损失度(S9) | “非常小”至“非常大”依次赋值1~5 | + | 0.032 | ||
| 能源设备故障担忧(S10) | “非常小”至“非常大”依次赋值1~5 | + | 0.039 | ||
| 适应能力 | 生态价值 | 转型后室内烟尘量(A1) | “非常大”至“非常小”依次赋值1~5 | - | 0.046 |
| 转型后空气质量提升(A2) | “非常小”至“非常大”依次赋值1~5 | - | 0.062 | ||
| 转型后村庄面貌改善(A3) | “非常小”至“非常大”依次赋值1~5 | - | 0.063 | ||
| 个人规范 | 减少化石能源责任感(A4) | “非常小”至“非常大”依次赋值1~5 | - | 0.042 | |
| 环保责任感(A5) | “非常小”至“非常大”依次赋值1~5 | - | 0.050 | ||
| 能源升级意识(A6) | “非常小”至“非常大”依次赋值1~5 | - | 0.047 | ||
| 政策满意度 | 清洁能源推广满意度(A7) | “非常不满意”至“非常满意”依次赋值1~5 | - | 0.021 | |
| 补贴政策满意度(A8) | “非常不满意”至“非常满意”依次赋值1~5 | - | 0.022 | ||
| 后续服务政策满意度(A9) | “非常不满意”至“非常满意”依次赋值1~5 | - | 0.024 |
表2
主要变量解释"
| 维度 | 变量 | 赋值 | 样本均值 | |
|---|---|---|---|---|
| 因变量 | 农户清洁能源使用的脆弱性(y) | 低脆弱性=1;中脆弱性=2;高脆弱性=3 | 2.00 | |
| 自变量 | 经济层面 | 家庭收入(x1) | 1×104元以下=1;1×104~3×104元=2;3×104~5×104元=3;5×104~1×105元=4;1×105元以上=5 | 2.60 |
| 耕地面积(x2) | <0.03 hm2=1;0.03~0.10 hm2=2;0.10~0.20 hm2=3;0.20~0.40 hm2=4;>0.40 hm2=5 | 4.14 | ||
| 社会层面 | 能源补贴政策(x3) | “非常不满意”至“非常满意”依次赋值1~5 | 3.00 | |
| 社会网络(x4) | 受邻居影响:“非常小”至“非常大”依次赋值1~5 | 3.97 | ||
| 家庭层面 | 性别(x5) | 女=0;男=1 | 0.59 | |
| 年龄(x6) | 20岁以下=1;20岁~29岁=2;30~39岁=3;40~49岁=4;50~59岁=5;60岁以上=6 | 4.56 | ||
| 生计类型(x7) | 务农或失业=1;务农兼打工=2;务工(包括个体经营)=3;企事业单位人员(包括村干部)=4;其他=5 | 1.74 | ||
| 受教育程度(x8) | 小学及以下=1;初中毕业=2;高中/中专/职专毕业=3;大专及以上=4 | 1.39 | ||
| 党员数量(x9) | 没有=0;有=1 | 0.13 | ||
| 家庭规模(x10) | 家庭常住人口数量/人 | 3.60 | ||
表5
不同生态脆弱区Logit回归结果"
| 变量 | 总样本 | 黄土高原生态脆弱区 | 沙漠生态脆弱区 | 青藏高原生态脆弱区 | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| B | Exp(B) | B | Exp(B) | B | Exp(B) | B | Exp(B) | ||||
| x1 | -0.074 | 0.929 | -0.032 | 0.969 | -0.188 | 0.829 | -0.359*** | 0.698 | |||
| x2 | -0.822*** | 0.440 | -1.000*** | 0.368 | -0.841*** | 0.431 | -0.608*** | 0.544 | |||
| x3 | -0.359*** | 0.698 | -0.445*** | 0.641 | -0.003 | 0.997 | -0.396*** | 0.673 | |||
| x4 | 0.538*** | 1.713 | 0.608*** | 1.837 | 0.508*** | 1.662 | 0.453*** | 1.573 | |||
| x5 | -0.074 | 0.929 | -0.004 | 0.996 | -0.176 | 0.839 | -0.178 | 0.837 | |||
| x6 | 0.308*** | 1.361 | 0.338*** | 1.402 | 0.534*** | 1.706 | 0.142* | 1.153 | |||
| x7 | -0.179*** | 0.836 | -0.354*** | 0.702 | -0.206 | 0.814 | -0.226* | 0.798 | |||
| x8 | -0.119 | 0.888 | -0.121 | 0.886 | -0.333* | 0.717 | -0.091 | 0.913 | |||
| x9 | -0.115 | 0.891 | -0.030 | 0.970 | -0.187 | 0.829 | -0.578 | 0.561 | |||
| x10 | 0.063** | 1.065 | 0.042 | 1.043 | 0.003 | 1.003 | 0.162** | 1.176 | |||
表6
稳健性检验回归结果"
| 变量 | 更换自变量回归 | 缩小研究样本回归 | |||
|---|---|---|---|---|---|
| B | Exp(B) | B | Exp(B) | ||
| x1 | -0.163*** | 0.850 | -0.054 | 0.947 | |
| x2 | 0.099 | 1.104 | -0.673*** | 0.510 | |
| x3 | -0.367*** | 0.693 | -0.276*** | 0.759 | |
| x4 | 0.515*** | 1.674 | 0.421*** | 1.523 | |
| x5 | -0.166* | 0.847 | -0.065 | 0.937 | |
| x6 | 0.261*** | 1.298 | 0.267*** | 1.306 | |
| x7 | -0.207*** | 0.813 | -0.187** | 0.829 | |
| x8 | -0.151** | 0.860 | -0.084 | 0.919 | |
| x9 | -0.139 | 0.870 | -0.025 | 0.975 | |
| x10 | 0.050* | 1.051 | 0.110* | 1.116 | |
| [1] |
韩晓, 魏楚, 吴施美. 中国农村居民生物质能消费估计[J]. 资源科学, 2023, 45(9): 1817-1829.
doi: 10.18402/resci.2023.09.09 |
|
[Han Xiao, Wei Chu, Wu Shimei. Estimation of biomass energy consumption in rural China[J]. Resources Science, 2023, 45(9): 1817-1829.]
doi: 10.18402/resci.2023.09.09 |
|
| [2] | 张增凯, 彭彬彬, 解伟, 等. 能源转型与管理领域的科学研究问题[J]. 管理科学学报, 2021, 24(8): 147-153. |
| [Zhang Zengkai, Peng Binbin, Xie Wei, et al. Scientific research issues in the field of energy transition and management[J]. Journal of Management Science in China, 2021, 24(8): 147-153.] | |
| [3] | 沈国锋, 熊瑞, 程和发, 等. 青藏农村生活能源结构及一次PM2.5排放估算[J]. 科学通报, 2021, 66(15): 1900-1911. |
| [Shen Guofeng, Xiong Rui, Cheng Hefa, et al. Rural residential energy carrier structure and primary PM2.5 emissions from the Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2021, 66(15): 1900-1911.] | |
| [4] |
畅华仪, 张俊飚, 何可. 村庄吸引力对农村家庭生活能源清洁转型的影响——来自非正式就业的机制解释[J]. 资源科学, 2023, 45(2): 388-402.
doi: 10.18402/resci.2023.02.12 |
|
[Chang Huayi, Zhang Junbiao, He Ke. The effect of village attraction on rural household clean energy transition: An explanation from informal off-farm employment[J]. Resources Science, 2023, 45(2): 388-402.]
doi: 10.18402/resci.2023.02.12 |
|
| [5] |
EllisonC, Li Y, Yu F, et al. Household transitions to clean energy in a multiprovincial cohort study in China[J]. Nature Sustainability, 2020, 3(1): 42-50.
doi: 10.1038/s41893-019-0432-x |
| [6] | 贺克斌, 李雪玉. 中国散煤综合治理研究报告2023[R]. 北京: 北京大学能源研究院, 2023. |
| [He Kebin, Li Xueyu. China dispersed coalmanagementreport 2023[R]. Beijing: Institute of Energy, Peking University, 2023.] | |
| [7] |
鲍超, 徐牧天. 西北地区投入产出效率的综合测度与时空变化[J]. 干旱区地理, 2021, 44(6): 1772-1783.
doi: 10.12118/j.issn.1000–6060.2021.06.25 |
|
[Bao Chao, Xu Mutian. Comprehensive measurement and spatiotemporal variations of input-output efficiency in northwest China[J]. Arid Land Geography, 2021, 44(6): 1772-1783.]
doi: 10.12118/j.issn.1000–6060.2021.06.25 |
|
| [8] | Duan M M, Li L Y, Liu X J, et al. Turning awareness into behavior: Meta-analysis of household residential life energy transition behavior from the dual perspective of internal driving forces and external inducing forces[J]. Energy, 2023, 279: 128072, doi: 10.1016/j.energy.2023.128072. |
| [9] |
Foster V, Trotter P A, Werner S, et al. Development transitions for fossil fuel-producing low and lower-middle income countries in a carbon-constrained world[J]. Nature Energy, 2024, 9(3): 242-250.
doi: 10.1038/s41560-023-01440-3 |
| [10] | 刘平阔, 卢存禹. 中国能源转型路径选择的影响因素: 理论检验与实证分析[J]. 中国软科学, 2022(6): 51-61. |
| [Liu Pingkuo, Lu Cunyu. Influencing factors of the pathway selection for China’s energy transition: Theoretical verification and empirical analysis[J]. China Soft Science, 2022(6): 51-61.] | |
| [11] | 庄明浩, 鲁玺, 王艳芬, 等. 青藏高原牧区家庭能源消费对生态环境和人体健康的影响研究现状与展望[J]. 生态学报, 2023, 43(5): 1775-1783. |
| [Zhuang Minghao, Lu Xi, Wang Yanfen, et al. Research status and prospect of household energy consumption impact on eco-environment and human health in the pastoral of Qinghai-Xizang Plateau[J]. Acta Ecologica Sinica, 2023, 43(5): 1775-1783.] | |
| [12] | 高鸣, 魏佳朔. 促进农民农村共同富裕: 历史方位和实现路径[J]. 中国软科学, 2022(8): 45-57. |
| [Gao Ming, Wei Jiashuo. Promoting farmers and rural areas to achieve common prosperity: Historical orientation and realization path[J]. China Soft Science, 2022(8): 45-57.] | |
| [13] | Pachauri R K, Allen M R, Barros V R, et al. Climate change 2014 synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change[M]. Geneva: IPCC, 2014: 151. |
| [14] |
Polsky C, Neff R, Yarnal B. Building comparable global change vulnerability assessments: The vulnerability scoping diagram[J]. Global Environmental Change, 2007, 17(3-4): 472-485.
doi: 10.1016/j.gloenvcha.2007.01.005 |
| [15] | 中华人民共和国生态环境部. 全国生态脆弱区保护规划纲要[EB/OL]. [2008-09-27]. https://www.mee.gov.cn/gkml/hbb/bwj/200910/t20091022_174613.htm. |
| [Ministry of Ecology and Enviroment National of the People’s Republic of China. Outline of national ecological fragile area protection plan[EB/OL]. [2008-09-27]. https://www.mee.gov.cn/gkml/hbb/bwj/200910/t20091022_174613.htm. ] | |
| [16] | 姜璐. 青藏高原农村家庭能源消费与能源贫困研究——以青海省为例[D]. 兰州: 兰州大学, 2019. |
| [Jiang Lu. Rural household energy consumption and energy poverty in the Qinghai-Tibet Plateau: Case of Qinghai Province[D]. Lanzhou: Lanzhou University, 2019.] | |
| [17] | Fan S Y, Zha S, Zhao C X, et al. Using energy vulnerability to measure distributive injustice in rural heating energy reform: A case study of natural gas replacing bulk coal for heating in Gaocheng District, Hebei Province, China[J]. Ecological Economics, 2022, 197: 107456, doi: 10.1016/j.ecolecon.2022.107456. |
| [18] | 陶澍, 沈国锋, 沈惠中, 等. 中国生活部门固体燃料消耗的排放贡献和健康风险的区域性差异[R]. 北京: 北京大学, 2024. |
| [Tao Shu, Shen Guofeng, Shen Huizhong, et al. Regional differences in emission contributions and health risks from solid fuel consumption in China’s residential sector[R]. Beijing: Peking University, 2024.] | |
| [19] |
Xu S Q, Wang R, Gasser T, et al. Delayed use of bioenergy crops might threaten climate and food security[J]. Nature, 2022, 609(7926): 299-306.
doi: 10.1038/s41586-022-05055-8 |
| [20] | Sheha M, Mohammadi K, Powell K. Techno-economic analysis of the impact of dynamic electricity prices on solar penetration in a smart grid environment with distributed energy storage[J]. Applied Energy, 2021, 282: 116168, doi: 10.1016/j.apenergy.2020.116168. |
| [21] | 张大永, 姬强, 李佳伽. 中国家庭能源消费: 现状、挑战与未来[M]. 成都: 西南财经大学出版社, 2023: 63-80. |
| [Zhang Dayong, Ji Qiang, Li Jiajia. China’s household energy consumption: Current situation, challenges and future[M]. Chengdu: Southwestern University of Finance and Economics Press, 2023: 63-80.] | |
| [22] | 滕玉华. 农村居民应用和推广清洁能源意愿影响因素研究——采用江西省695份样本数据的经验分析[J]. 西部论坛, 2018, 28(3): 17-24. |
| [Teng Yuhua. Study on influencing factors of the willingness of rural residents to use clean energy: Empirical analysis based on 695 sample data of Jiangxi Province[J]. West Forum, 2018, 28(3): 17-24.] | |
| [23] |
Carley S, Evans T P, Graff M, et al. A framework for evaluating geographic disparities in energy transition vulnerability[J]. Nature Energy, 2018, 3(8): 621-627.
doi: 10.1038/s41560-018-0142-z |
| [24] |
姜璐, 刘艳娟, 史晓楠, 等. 基于物质流的青海高原城镇社区家庭能源消费研究——以西宁市为例[J]. 干旱区地理, 2023, 46(2): 294-304.
doi: 10.12118/j.issn.1000-6060.2022.172 |
|
[Jiang Lu, Liu Yanjuan, Shi Xiaonan, et al. Household energy consumption in urban communities in Qinghai Plateau based on material flow: A case of Xining City[J]. Arid Land Geography, 2023, 46(2): 294-304.]
doi: 10.12118/j.issn.1000-6060.2022.172 |
|
| [25] | 吴施美, 郑新业. 收入增长与家庭能源消费阶梯——基于中国农村家庭能源消费调查数据的再检验[J]. 经济学(季刊), 2022, 22(1): 45-66. |
| [Wu Shimei, Zheng Xinye. Revisit of household energy ladder: Empirical evidence from a household survey in rural China[J]. China Economic Quarterly, 2022, 22(1): 45-66.] | |
| [26] |
Ajzen I. The theory of planned behavior[J]. Organizational Behavior and Human Decision Processes, 1991, 50(2): 179-211.
doi: 10.1016/0749-5978(91)90020-T |
| [27] | 王火根, 梁弋雯. 基于扎根理论农村清洁能源推广影响因素研究[J]. 科技管理研究, 2018, 38(11): 234-239. |
| [Wang Huogen, Liang Yiwen. Analysis on factors affecting promotion of clean energy in the countryside based on the grounded theory[J]. Science and Technology Management Research, 2018, 38(11): 234-239.] | |
| [28] | Zhu H G, Fang S Y, Zhang S P, et al. Effects of social capital on energy poverty: Evidence from the national key ecological function zones in northeast China[J]. Energy, 2024, 304: 131956, doi: 10.1016/j.energy.2024.131956. |
| [29] | 畅华仪, 何可, 张俊飚. 挣扎与妥协: 农村家庭缘何陷入能源贫困“陷阱”[J]. 中国人口·资源与环境, 2020, 30(2): 11-20. |
| [Chang Huayi, He Ke, Zhang Junbiao. Energy poverty in rural China: A psychological explanations base on households[J]. China Population, Resources and Environment, 2020, 30(2): 11-20.] | |
| [30] |
Geng J C, Long R Y, Chen H, et al. Exploring the motivation-behavior gap in urban residents’ green travel behavior: A theoretical and empirical study[J]. Resources, Conservation and Recycling, 2017, 125: 282-292.
doi: 10.1016/j.resconrec.2017.06.025 |
| [31] | 韩振, 彭超, 刘合光. 政府保障、社会监督与农村居民生活垃圾集中处理行为——基于183村1365份农户调查数据的分析[J]. 农村经济, 2023(10): 73-82. |
| [Han Zhen, Peng Chao, Liu Heguang. Government guarantee, social supervision and rural residents’ domestic waste concentrated disposal behavior: Based on the survey data of 1365 households in 183 villages[J]. Rural Economy, 2023(10): 73-82.] | |
| [32] | Neves C, Oliveira T. Drivers of consumers’ change to an energy-efficient heating appliance (EEHA) in households: Evidence from five European countries[J]. Applied Energy, 2021, 298: 117165,doi: 10.1016/j.apenergy.2021.117165. |
| [33] |
秦格霞, 孟治元, 李妮. 黄土高原水分利用效率动态及其对干旱和地表温度的响应[J]. 干旱区地理, 2024, 47(11): 1887-1898.
doi: 10.12118/j.issn.1000-6060.2023.719 |
|
[Qin Gexia, Meng Zhiyuan, Li Ni. Dynamics of water use efficiency and its response to drought and land surface temperature on the Loess Plateau[J]. Arid Land Geography, 2024, 47(11): 1887-1898.]
doi: 10.12118/j.issn.1000-6060.2023.719 |
|
| [34] |
马明德, 李俊杰, 薛晨皓. 宁夏区域发展对环境胁迫的时空演变及驱动机制分析[J]. 干旱区地理, 2024, 47(6): 1061-1072.
doi: 10.12118/j.issn.1000-6060.2023.318 |
|
[Ma Mingde, Li Junjie, Xue Chenhao. Spatiotemporal evolution and driving mechanism of environmental stress of regional development in Ningxia Hui Autonomous Region[J]. Arid Land Geography, 2024, 47(6): 1061-1072.]
doi: 10.12118/j.issn.1000-6060.2023.318 |
|
| [35] | Cao Z, Meng Q, Gao B Z. The consumption patterns and determining factors of rural household energy: A case study of Henan Province in China[J]. Renewable and Sustainable Energy Reviews, 2021, 146: 111142, doi: 10.1016/j.rser.2021.111142. |
| [36] | Yang Y, Xia S Y, Huang P, et al. Energy transition: Connotations, mechanisms and effects[J]. Energy Strategy Reviews, 2024, 52: 101320, doi: 10.1016/j.esr.2024.101320. |
| [37] | 滕玉华, 刘长进, 陈燕, 等. 基于结构方程模型的农户清洁能源应用行为决策研究[J]. 中国人口·资源与环境, 2017, 27(9): 186-195. |
| [Teng Yuhua, Liu Changjin, Chen Yan, et al. Decision research on rural residents’ clean energy applied behavior based on a SEM model[J]. China Population, Resources and Environment, 2017, 27(9): 186-195.] |
| [1] | 郑孟林, 赵勇, 杨霞. 中国西北干旱区夏季降水异常的主模态年代际变化及其联系环流[J]. 干旱区地理, 2025, 48(9): 1511-1520. |
| [2] | 余瀚, 孟志华, 王静爱. 甘肃省自然灾害社会脆弱性评价与综合区划[J]. 干旱区地理, 2025, 48(8): 1421-1431. |
| [3] | 杨雪梅, 王让会, 刘春伟. 未来多情景下柯柯牙工程区水资源脆弱性评价及预测[J]. 干旱区地理, 2025, 48(4): 640-648. |
| [4] | 郑孟林, 赵勇, 杨霞. 1961—2022年中国西北干旱区夏季降水变化特征[J]. 干旱区地理, 2025, 48(3): 367-379. |
| [5] | 李康宁, 林伊琳, 赵俊三, 王健, 葛峰. 三江源植被覆盖变化驱动机制及生态脆弱性分析[J]. 干旱区地理, 2025, 48(2): 283-295. |
| [6] | 邓文彬, 宋森, 易红梅. 基于改进遥感生态指数的准东地区生态环境质量时空变化分析[J]. 干旱区地理, 2025, 48(12): 2073-2086. |
| [7] | 林墨飞, 关雅文, 连艺霏. 基于SRP模型的塔里木胡杨林公园生态脆弱性研究[J]. 干旱区地理, 2025, 48(11): 2019-2030. |
| [8] | 田晋华, 黄枭, 高雅玉, 郝建斌, 吴冠衡, 何文博. 中国西北干旱生态移民区跨流域调水生态效益研究——以黄花滩生态移民区为例[J]. 干旱区地理, 2025, 48(11): 1926-1938. |
| [9] | 朱瑷嫒, 殷颂葵, 刘琼慧. 中国西北地区农业生态效率时空分异及影响因素研究[J]. 干旱区地理, 2024, 47(7): 1210-1219. |
| [10] | 包微, 黄晓军, 纪王迪. 关中地区高温脆弱性评估及其时空变化研究[J]. 干旱区地理, 2024, 47(11): 1863-1875. |
| [11] | 肖东升,王宁,刘志成. 干旱地区“代表性人口格网数据集”精度研究——以甘宁青地区为例[J]. 干旱区地理, 2023, 46(3): 505-514. |
| [12] | 杨洋, 乔家君, 王伟, 张二申. 扶贫资源配置对低收入农户收入影响——以青海省18村为例[J]. 干旱区地理, 2023, 46(2): 325-336. |
| [13] | 卓静,胡皓,何慧娟,王智,杨承睿. 陕北黄土高原生态脆弱性时空变异及驱动因素分析[J]. 干旱区地理, 2023, 46(11): 1768-1777. |
| [14] | 姚旭阳,张明军,张宇,王家鑫,肖涵余. 中国西北地区气候转型的新认识[J]. 干旱区地理, 2022, 45(3): 671-683. |
| [15] | 陈晨,汪丽,程林. 北方农牧交错带少数民族语地名文化脆弱性评价体系构建与实证[J]. 干旱区地理, 2022, 45(3): 976-985. |
|
||
