[1] |
Yao T D, Bolch T, Chen D L, et al. The imbalance of the Asian water tower[J]. Nature Reviews Earth & Environment, 2022, 3: 618-632.
|
[2] |
Huang J P, Zhou X J, Wu G X, et al. Global climate impacts of land-surface and atmospheric processes over the Tibetan Plateau[J]. Reviews of Geophysics, 2023, 61: e2022RG000771, doi: 10.1029/2022RG000771.
|
[3] |
Immerzeel W W, Lutz A F, Andrade M, et al. Importance and vulnerability of the world’s water towers[J]. Nature, 2020, 577: 364-369.
|
[4] |
李均力, 陈曦, 包安明, 等. 公格尔九别峰冰川跃动无人机灾害监测与评估[J]. 干旱区地理, 2016, 39(2): 378-386.
|
|
[Li Junli, Chen Xi, Bao Anming, et al. Glacier hazard emergency monitoring of the Jiubie Peak in Kongur Mountains using unmanned aerial vehicle photogrammetry[J]. Arid Land Geography, 2016, 39(2): 378-386.]
|
[5] |
Zhong L, Ma Y M, Xue Y L, et al. Climate change trends and impacts on vegetation greening over the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(14): 7540-7552.
|
[6] |
Zhang G Q, Yao T D, Chen W F, et al. Regional differences of lake evolution across China during 1960s—2015 and its natural and anthropogenic causes[J]. Remote Sensing of Environment, 2019, 221: 386-404.
|
[7] |
Messager M L, Lehner B, Grill G, et al. Estimating the volume and age of water stored in global lakes using a geo-statistical approach[J]. Nature Communications, 2016, 7(1): 13603, doi: 10.1038/ncomms13603.
|
[8] |
Ma R H, Duan H T, Hu C M, et al. A half-century of changes in China’s lakes: Global warming or human influence?[J] Geophysical Research Letters, 2010, 37(24): L24106, doi: 10.1029/2010GL045514.
|
[9] |
Zhang G Q, Yao T D, Xie H J, et al. Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms[J]. Earth-Science Reviews, 2020, 208: L103269, doi: 10.1016/j.earscirev.2020.103269.
|
[10] |
车彦军, 陈丽花, 谷来磊, 等. 东昆仑木孜塔格峰地区冰湖演变与冰川物质亏损[J]. 冰川冻土, 2023, 45(4): 1254-1265.
doi: 10.7522/j.issn.1000-0240.2023.0096
|
|
[Che Yanjun, Chen Lihua, Gu Lailei, et al. Evolution of glacial lakes and glacier mass loss in Ulugh Muztagh area of eastern Kunlun Mountains[J]. Journal of Glaciology and Geocryology, 2023, 45(4): 1254-1265.]
doi: 10.7522/j.issn.1000-0240.2023.0096
|
[11] |
郑喜玉. 库木库里盆地盐湖形成自然环境[J]. 盐湖研究, 2001, 9(2): 1-6.
|
|
[Zheng Xiyu. The natural environment of the salt lakes formation of Kumukule Basin[J]. Journal of Salt Lake Research, 2001, 9(2): 1-6.]
|
[12] |
Liang Q, Wang N L, Yang X W, et al. The eastern limit of ‘Kunlun-Pamir-Karakoram Anomaly’ reflected by changes in glacier area and surface elevation[J]. Journal of Glaciology, 2022, 68(272): 1167-1176.
|
[13] |
Gu L L, Che Y J, Zhang M J, et al. Slight mass loss in glaciers over the Ulugh Muztagh Mountains during the period from 2000 to 2020[J]. Remote Sensing, 2023, 15(9): 2338, doi: 10.3390/rs15092338.
|
[14] |
Guo L, Li J, Wu L X, et al. Investigating the recent surge in the Monomah Glacier, central Kunlun Mountain range with multiple sources of remote sensing data[J]. Remote Sensing, 2020, 12: 966, doi: 10.3390/rs12060966.
|
[15] |
王松涛, 金晓媚, 高萌萌, 等. 阿牙克库木湖动态变化及其对冰川消融的响应[J]. 人民黄河, 2016, 38(7): 64-67.
|
|
[Wang Songtao, Jin Xiaomei, Gao Mengmeng, et al. Dynamic change of Ayakekumu Lake and its response to glaciers melting[J]. Yellow River, 2016, 38(7): 64-67.]
|
[16] |
陈军, 汪永丰, 郑佳佳, 等. 中国阿牙克库木湖水量变化及其驱动机制[J]. 自然资源学报, 2019, 34(6): 1345-1356.
|
|
[Chen Jun, Wang Yongfeng, Zheng Jiajia, et al. The changes in the water volume of Ayakekumu Lake based on satellite remote sensing data[J]. Journal of Natural Resources, 2019, 34(6): 1345-1356.]
|
[17] |
Scaramuzza P, Micijevic E, Chander G. SLC gap-filled products phase one methodology[S]. USGS: Landsat Technical Notes, 2004.
|
[18] |
Hugonnet R, McNabb R, Berthier E, et al. Accelerated global glacier mass loss in the early twenty-first century[J]. Nature, 2021, 592: 726-731.
|
[19] |
Cao Z T, Nan Z T, Hu J N, et al. A new 2010 permafrost distribution map over the Qinghai-Tibet Plateau based on subregion survey maps: A benchmark for regional permafrost modeling[J]. Earth System Science Data, 2023, 15: 3905-3930.
|
[20] |
Wang S J, Li H Y, Zhang M J, et al. Assessing gridded precipitation and air temperature products in the Ayakkum Lake, Central Asia[J]. Sustainability, 2022, 14: 10654, doi: 10.3390/su141710654.
|
[21] |
杨针娘, 刘新仁, 曾群柱, 等. 中国寒区水文[M]. 北京: 科学出版社, 2000: 54-121.
|
|
[Yang Zhenniang, Liu Xinren, Zeng Qunzhu, et al. Hydrology of cold regions in China[M]. Bejing: Science Press, 2000: 54-121.]
|
[22] |
Daout S, Doin M P, Peltzer G, et al. Large-scale InSAR monitoring of permafrost freeze-thaw cycles on the Tibetan Plateau[J]. Geophysical Research Letters, 2017, 44(2): 901-909.
|
[23] |
Wang L X, Zhao L, Zhou H Y, et al. Contribution of ground ice melting to the expansion of Selin Co (lake) on the Tibetan Plateau[J]. The Cryosphere, 2022, 16(7): 2745-2767.
|
[24] |
Lei Y B, Yang K, Wang B, et al. Response of inland lake dynamics over the Tibetan Plateau to climate change[J]. Climatic Change, 2014, 125(2): 281-290.
|
[25] |
Hirabayashi Y, Liu Q, Liu S Y, et al. Glacier runoff and its impact in a highly glacierized catchment in the southeastern Tibetan Plateau: Past and future trends[J]. Journal of Glaciology, 2017, 61(228): 713-730.
|
[26] |
Zhang Y G, Hao Z C, Xu C Y, et al. Response of melt water and rainfall runoff to climate change and their roles in controlling streamflow changes of the two upstream basins over the Tibetan Plateau[J]. Hydrology Research, 2019, 51(2): 272-289.
|
[27] |
Zhou S Q, Kang S C, Chen F, et al. Water balance observations reveal significant subsurface water seepage from Lake Nam Co, south-central Tibetan Plateau[J]. Journal of Hydrology, 2013, 491: 89-99.
|
[28] |
Tong K, Su F G, Xu B Q. Quantifying the contribution of glacier meltwater in the expansion of the largest lake in Tibet[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(19): 11158-11173.
|
[29] |
Lei Y B, Yang K, Immerzeel WW, et al. Critical role of groundwater inflow in sustaining lake water balance on the western Tibetan Plateau[J]. Geophysical Research Letters, 2022, 49(20): e2022GL099268, doi: 10.1029/2022GL099268.
|