收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2021, Vol. 44 ›› Issue (5): 1231-1239.doi: 10.12118/j.issn.1000–6060.2021.05.04

• 气候与水文 • 上一篇    下一篇

贺兰山东麓暴雨气候特征及灾害防御对策

李晓虹1,2,3(),苏占胜1,2,4(),纳丽1,2,4,陈豫英1,2,陈彦虎3,吴保国4   

  1. 1.中国气象局旱区特色农业气象灾害监测预警与风险管理重点实验室,宁夏 银川 750000
    2.宁夏气象防灾减灾重点实验室,宁夏 银川 750000
    3.宁夏石嘴山市气象局,宁夏 石嘴山 753000
    4.宁夏气象服务中心,宁夏 银川 750000
  • 收稿日期:2020-11-25 修回日期:2021-04-15 出版日期:2021-09-25 发布日期:2021-09-22
  • 通讯作者: 苏占胜
  • 作者简介:李晓虹(1987-),女,工程师,主要从事天气预报与气象服务研究. E-mail: 290141608@qq.com
  • 基金资助:
    国家自然科学基金项目(41965001);中国气象局旱区特色农业气象灾害监测预警与风险管理重点实验室2019年度指令性科 研项目(CAMP-201919)

Climate characteristics of rainstorm and disaster prevention countermeasures along the eastern Helan Mountain

LI Xiaohong1,2,3(),SU Zhansheng1,2,4(),NA Li1,2,4,CHEN Yuying1,2,CHEN Yanhu3,WU Baoguo4   

  1. 1. Key Laboratory for Meteorological Disaster Monitoring and Early Warning and Risk Management of Characteristic Agriculture in Arid Regions, CMA, Yinchuan 750000, Ningxia, China
    2. Ningxia Key Lab of Meteorological Disaster Prevention and Reduction, Yinchuan 750000, Ningxia, China
    3. Shizuishan Meteorological Observatory of Ningxia, Shizuishan 753000, Ningxia, China
    4. Ningxia Meteorological Service Center, Yinchuan 750000, Ningxia, China
  • Received:2020-11-25 Revised:2021-04-15 Online:2021-09-25 Published:2021-09-22
  • Contact: Zhansheng SU

摘要:

利用贺兰山东麓9个常规站及287个自动气象站汛期(5-9月)逐小时降水量资料,应用线性趋势系数、克里金插值及Morlet小波变换等方法,分析了该地区的暴雨时空特征和振荡周期。结果表明:(1) 贺兰山东麓暴雨日数20世纪60年代最多,暴雨强度20世纪70年代最强,暴雨贡献率2011-2019年最大。(2) 1961-2019年年平均暴雨日数为2.1 d,暴雨强度为46.6 mm·d-1。(3) 1961-2019年暴雨日数有2.1 d·(10a)-1的下降趋势,暴雨强度变化不大,暴雨贡献率有1%·(10a)-1的弱上升趋势。(4) 暴雨主要出现在7月和8月,集中出现在7月中旬至8月中旬。(5) 贺兰山东麓各站不同时间段共出现短时强降水810次,主要出现在夜间21:00-22:00和白天16:00,其中夜间暴雨占57.8%。(6) 暴雨日数存在2~6 a、7~15 a的周期性变化,变化的第一主周期为3 a,暴雨强度存在2~4 a、5~16 a的周期变化,变化的第一主周期为9 a。(7) 暴雨出现日数最多、强度最强、量级最大的区域主要分布在贺兰山银川至石嘴山段的沿山区域。(8) 洪涝灾害具有发生频率高、涉及范围广,季节性明显、区域集中,破坏性强、造成损失大等特点。

关键词: 暴雨, 气候特征, 时空特征, 灾害防御, 贺兰山东麓

Abstract:

Using the hourly precipitation data of nine conventional stations and 287 automatic weather stations during the flood season of May to September along the eastern Helan Mountain in Ningxia, China, the temporal and spatial characteristics and oscillation periods of the rainstorm were analyzed in this study using the linear trend coefficient, Kriging interpolation, and Morlet wavelet transform. First, we recorded the highest rainstorm days in the 1960s, intensity in the 1970s, and contribution rate from 2011 to 2019. Second, the average annual number of rainstorms along the eastern Helan Mountain from 1961 to 2019 was 2.1 d, and the rainstorm intensity was 46.6 mm·d-1. Third, the number of rainstorm days showed a downward trend of 2.1 d·(10a)-1, and the rainstorm intensity depicted a little change trend. The rainstorm contribution rate had a weak upward trend of 1%·(10a)-1 from 1961 to 2019. Fourth, rainstorm mainly occurred in July and August, with more concentrated rains from mid-July to mid-August. Fifth, 810 short-term heavy precipitations were observed in different periods along the eastern Helan Mountain, which mainly occurred at 21:00-22:00 and 16:00. Accordingly, 57.8% of the rainstorms occurred at night. Sixth, the number of rainstorm days showed periodic changes of 2-6 a and 7-15 a, with the first main period of change being 3 a. Meanwhile, the rainstorm intensity depicted periodic changes of 2-4 a and 5-16 a, with the first main period of change being 9 a. Seventh, the area with the largest number of days, strongest intensity, and largest magnitude of rainstorm was mainly distributed in the mountain area of Yinchuan to Shizuishan of Helan Mountain. Lastly, the flood disaster along the eastern Helan Mountain was characterized by high frequency, wide range, obvious seasonality, regional concentration, strong destructivity, and great loss.

Key words: rainstorm, climate characteristics, the spatial and temporal characteristics, disaster prevention, the eastern Helan Mountain