收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2024, Vol. 47 ›› Issue (11): 1828-1840.doi: 10.12118/j.issn.1000-6060.2023.609

• 第三次新疆综合科学考察 • 上一篇    下一篇

1990—2020年新疆伊犁地区雪灾时空分布特征及其影响评估

火红1,2,3(), 刘艳1,3,4(), 买吾拉夏·木巴热克1,2,3   

  1. 1.中国气象局乌鲁木齐沙漠气象研究所,新疆 乌鲁木齐 830002
    2.乌兰乌苏生态与农业气象新疆野外科学观测研究站,新疆 乌鲁木齐 830002
    3.中国气象局阿克达拉大气本底野外科学试验基地,新疆 乌鲁木齐 830002
    4.新疆沙漠气象与沙尘暴重点实验室,新疆 乌鲁木齐 830002
  • 收稿日期:2023-10-26 修回日期:2024-03-04 出版日期:2024-11-25 发布日期:2024-12-03
  • 通讯作者: 刘艳(1978-),女,硕士,研究员,主要从事遥感与GIS等方面的研究. E-mail: liuyan@idm.cn
  • 作者简介:火红(1995-),女,硕士研究生,主要从事遥感与GIS等方面的研究. E-mail: huohong@idm.cn
  • 基金资助:
    第三次新疆综合科学考察项目(2022xjkk0602)

Spatiotemporal distribution characteristics and impact assessment of snow disasters in the Ili region of Xinjiang from 1990 to 2020

HUO Hong1,2,3(), LIU Yan1,3,4(), Maiwulaxia MUBAREKE1,2,3   

  1. 1. Institute of Urumqi Desert Meteorology of China Meteorological Administration, Urumqi 830002, Xinjiang, China
    2. Wulanwusu Ecology and Agrometeorology Observation and Research Station of Xinjiang, Urumqi 830002, Xinjiang, China
    3. Field Scientific Experiment Base of Akdala Atmospheric Background, China Meteorological Administration, Urumqi 830002, Xinjiang, China
    4. Xinjiang Desert Meteorology and Sandstorm Key Laboratory, Urumqi 830002, Xinjiang, China
  • Received:2023-10-26 Revised:2024-03-04 Published:2024-11-25 Online:2024-12-03

摘要:

雪灾给伊犁地区带来了重大的经济和社会影响,主要表现在农业生产的减少和生态系统的破坏等方面。为量化和评估雪灾对伊犁地区的影响,基于1990—2020年伊犁地区的95次雪灾事件,通过指标选择、无量纲化处理以及权重分配,计算了灾损指数,并依据百分位数法,将雪灾严重性划分为一般、较重、严重和特重4个等级。结果表明:(1)1990—2020年伊犁地区雪灾次数呈双峰型分布,11月和1—2月为高发期,与季节性气候特征相关。自2014年以来,雪灾的发生次数显著下降。(2)1990—2020年伊犁地区一般等级雪灾最为常见,占比49.4%,较重、严重和特重等级占比分别为23.2%、24.2%和5.0%。(3)尼勒克县的灾损最严重,其次是新源县和伊宁县,昭苏县受影响最小。(4)雪灾发生及其严重性受累积降雪量、最大积雪深度、最低气温和降雪持续天数等气象要素影响。这些要素在县域间差异显著但整体趋势集中。研究结果可以为伊犁地区雪灾风险评估和管理提供科学依据。

关键词: 雪灾, 灾损指数, 强度和次数, 空间格局, 伊犁地区

Abstract:

The snow disasters in the Ili region of Xinjiang, China, have led to significant economic and social impacts, mainly through reduced agricultural production and ecosystem damage. To quantify and evaluate the impact of snow disasters in this region, this study analyzed 95 snow disaster events that occurred between 1990 and 2020. A disaster loss index was calculated using selected indicators, dimensionless processing, and weight assignment. The severity of snow disasters was categorized into four levels (mild, moderate, severe, and extreme) using the percentile method. The key findings are as follows: (1) Snow disasters in the Ili region exhibited a bimodal distribution, with peak occurrences in November and January-February, aligning with the region’s seasonal climatic characteristics. Since 2014, the frequency of snow disasters has notably decreased. (2) Mild snow disasters were the most frequent, accounting for 49.4% of events, while moderate, severe, and extreme snow disasters represented 23.2%, 24.2%, and 5.0%, respectively. (3) The most severe disaster losses were observed in Nilka County, followed by Xinyuan County and Yining County, whereas Zhaosu County was the least affected. (4) Key meteorological factors influencing snow disasters, including cumulative snowfall, maximum snow depth, minimum temperature, and snowfall duration, displayed regional variations. Areas with high snow disaster incidence had higher mean values of maximum snow depth compared to other regions. This study provides a scientific foundation for risk assessment and management of snow disasters in the Ili region.

Key words: snow disasters, disaster loss index, intensity and frequency, spatial patterns, Ili region