[1] |
Yuan W, Zheng Y, Piao S L, et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth[J]. Science Advances, 2019, 5(8): eaax1396, doi: 10.1126/sciadv.aax139.
doi: 10.1126/sciadv.aax139
|
[2] |
Grossiord C, Buckley T N, Cernusak L A, et al. Plant responses to rising vapor pressure deficit[J]. New Phytologist, 2020, 226(6): 1550-1566.
doi: 10.1111/nph.16485
pmid: 32064613
|
[3] |
He B, Chen C, Lin S R, et al. Worldwide impacts of atmospheric vapor pressure deficit on the interannual variability of terrestrial carbon sinks[J]. National Science Review, 2022, 9(4): nwab150, doi: 10.1093/nsr/nwab150/6355462.
doi: 10.1093/nsr/nwab150/6355462
|
[4] |
Sulman B N, Roman D T, Yi K, et al. High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil[J]. Geophysical Research Letters, 2016, 43(18): 9686-9695.
doi: 10.1002/2016GL069416
|
[5] |
Konings A G, Williams A P, Gentine P. Sensitivity of grassland productivity to aridity controlled by stomatal and xylem regulation[J]. Nature Geoscience, 2017, 10(4): 284-288.
doi: 10.1038/NGEO2903
|
[6] |
Novick K A, Ficklin D L, Stoy P C, et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes[J]. Nature Climate Change, 2016, 6(11): 1023-1027.
doi: 10.1038/nclimate3114
|
[7] |
Rawson H M, Begg J E, Woodward R G. The effect of atmospheric humidity on photosynthesis, transpiration and water use efficiency of leaves of several plant species[J]. Planta, 1977, 134(1): 5-10.
doi: 10.1007/BF00390086
pmid: 24419571
|
[8] |
Carnicer J, Barbeta A, Sperlich D, et al. Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale[J]. Frontiers in Plant Science, 2013, 4: 409, doi: 10.3389/fpls.2013.00409.
doi: 10.3389/fpls.2013.00409
pmid: 24146668
|
[9] |
Restaino C M, Peterson D L, Littell J. Increased water deficit decreases Douglas fir growth throughout western US forests[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(34): 9557-9562.
doi: 10.1073/pnas.1602384113
pmid: 27503880
|
[10] |
孟莹, 姜鹏, 方缘. 大气水分亏缺对中国两种典型草地生态系统总初级生产力的影响[J]. 生态学杂志, 2020, 39(11): 3633-3642.
|
|
[Meng Ying, Jiang Peng, Fang Yuan. Contrasting impacts of vapor pressure deficit on gross primary productivity in two typical grassland ecosystems in China[J]. Chinese Journal of Ecology, 2020, 39(11): 3633-3642.]
|
[11] |
Konings A G, Williams A P, Gentine P. Sensitivity of grassland productivity to aridity controlled by stomatal and xylem regulation[J]. Nature Geoscience, 2017, 10(4): 284-288.
doi: 10.1038/NGEO2903
|
[12] |
Running S W. Environmental control of leaf water conductance in conifers[J]. Canadian Journal of Forest Research, 1976, 6(1): 104-112.
doi: 10.1139/x76-013
|
[13] |
Bai Y, Liu Y, Kueppers L M, et al. The coupled effect of soil and atmospheric constraints on the vulnerability and water use of two desert riparian ecosystems[J]. Agricultural and Forest Meteorology, 2021, 311: 108701, doi: 10.1016/j.agrformet.2021.108701.
doi: 10.1016/j.agrformet.2021.108701
|
[14] |
Zhang Y, Song C, Band L E, et al. No proportional increase of terrestrial gross carbon sequestration from the greening earth[J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(8): 2540-2553.
doi: 10.1029/2018JG004917
|
[15] |
庞静, 杜自强, 张霄羽. 新疆地区植被对水热条件的时滞响应[J]. 中国农业资源与区划, 2015, 36(7): 82-88.
|
|
[Pang Jing, Du Ziqiang, Zhang Xiaoyu. Time-lagged response of vegetation to hydro-thermal factors in Xinjiang region[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2015, 36(7): 82-88.]
|
[16] |
姚俊强, 毛炜峄, 陈静, 等. 新疆气候“湿干转折”的信号和影响探讨[J]. 地理学报, 2021, 76(1): 57-72.
doi: 10.11821/dlxb202101005
|
|
[Yao Junqiang, Mao Weiyi, Chen Jing, et al. Signal and impact of wet-to-dry shift over Xinjiang, China[J]. Acta Geographica Sinica, 2021, 76(1): 57-72.]
doi: 10.11821/dlxb202101005
|
[17] |
王娜, 牛婷, 文方, 等. 新疆 1982—2015年植被变化及气候影响因素分析[J]. 新疆环境保护, 2020, 42(3): 28-34.
|
|
[Wang Na, Niu Ting, Wen Fang, et al. Analysis of vegetation variations and climate influencing factors in Xinjiang from 1982 to 2015[J]. Environmental Protection of Xinjiang, 2020, 42(3): 28-34.]
|
[18] |
Wang B L, Zhang M J, Wei J L, et al. Changes in extreme events of temperature and precipitation over Xinjiang, northwest China, during 1960—2009[J]. Quaternary International, 2013, 298: 141-151.
doi: 10.1016/j.quaint.2012.09.010
|
[19] |
Zhao X, Tan K, Zhao S, et al. Changing climate affects vegetation growth in the arid region of the northwestern China[J]. Journal of Arid Environments, 2011, 75(10): 946-952.
doi: 10.1016/j.jaridenv.2011.05.007
|
[20] |
贺可, 吴世新, 杨怡, 等. 近40 a新疆土地利用及其绿洲动态变化[J]. 干旱区地理, 2018, 41(6): 1333-1340.
|
|
[He Ke, Wu Shixin, Yang Yi, et al. Dynamic changes of land use and oasis in Xinjiang in the last 40 years[J]. Arid Land Geography, 2018, 41(6): 1333-1340.]
|
[21] |
黄嘉佑. 气象统计分析与预报方法[M]. 北京: 气象出版社, 1990: 28-30, 130-139.
|
|
[Huang Jiayou. Meteorological statistical analysis and prediction[M]. Beijing: China Meteorological Press, 1990: 28-30, 130-139.]
|
[22] |
焦文慧, 张勃, 马彬, 等. 近58 a中国北方地区极端气温时空变化及影响因素分析[J]. 干旱区地理, 2020, 43(5): 1220-1230.
|
|
[Jiao Wenhui, Zhang Bo, Ma Bin, et al. Temporal and spatial changes of extreme temperature and its influencing factors in northern China in recent 58 years[J]. Arid Land Geography, 2020, 43(5): 1220-1230.]
|
[23] |
韩艳莉, 于德永, 陈克龙, 等. 2000—2018年青海湖流域气温和降水量变化趋势空间分布特征[J]. 干旱区地理, 2022, 45(4): 999-1009.
|
|
[Han Yanli, Yu Deyong, Chen Kelong, et al. Spatial distribution characteristics of temperature and precipitation trend in Qinghai Lake Basin from 2000 to 2018[J]. Arid Land Geography, 2022, 45(4): 999-1009.]
|
[24] |
刘志红, Li Lingtao, Tim R. McVicar, 等. 专用气候数据空间插值软件ANUSPLIN及其应用[J]. 气象, 2008, 34(2): 92-100.
|
|
[Liu Zhihong, Li Lingtao, Tim R. Mcvicar, et al. Introduction of the professional interpolation software for meteorology data: ANUSPLIN[J]. Meteorological Monthly, 2008, 34(2): 92-100.]
|
[25] |
Zhang T Y, Chen Z, Zhang W K, et al. Long-term trend and interannual variability of precipitation-use efficiency in Eurasian grasslands[J]. Ecological Indicators, 2021, 130: 108091, doi: 10.1016/j.ecolind.2021.108091.
doi: 10.1016/j.ecolind.2021.108091
|
[26] |
程丹妮, 王颖琪, 程勇翔, 等. 新疆典型沙漠和绿洲植被-水汽-地表温度相关性分析[J]. 干旱区地理, 2022, 45(2): 456-466.
|
|
[Chen Danni, Wang Yingqi, Cheng Yongxiang. Vegetation-water vapor-land surface temperature correlation analysis of typical deserts and oases in Xinjiang[J]. Arid Land Geography, 2022, 45(2): 456-466.]
|
[27] |
沈永平, 苏宏超, 王国亚, 等. 新疆冰川、积雪对气候变化的响应(I): 水文效应[J]. 冰川冻土, 2013, 35(3): 513-527.
|
|
[Shen Yongping, Su Hongchao, Wang Guoya, et al. The responses of glaciers and snow cover to climate change in Xinjiang (I): Hydrological effect[J]. Journal of Glaciology and Geocryology, 2013, 35(3): 513-527.]
|
[28] |
李海霞, 杨井, 陈亚宁, 等. 基于MODIS数据的新疆地区土壤湿度反演[J]. 草业学报, 2017, 26(6): 16-27.
|
|
[Li Haixia, Yang Jing, Chen Yaning, et al. Retrieval of soil moisture information in Xinjiang using MODIS[J]. Acta Prataculturae Sinica, 2017, 26(6): 16-27.]
|
[29] |
吴秀兰, 张太西, 王慧, 等. 1961—2017年新疆区域气候变化特征分析[J]. 沙漠与绿洲气象, 2020, 14(4): 27-34.
|
|
[Wu Xiulan, Zhang Taixi, Wang Hui, et al. Characteristics of temperature and precipitation change in Xinjiang during 1961—2017[J]. Desert and Oasis Meteorology, 2020, 14(4): 27-34.]
|
[30] |
Guan X, Huang J, Guo R, et al. The role of dynamically induced variability in the recent warming trend slowdown over the Northern Hemisphere[J]. Scientific Reports, 2015, 5(1): 12669, doi: 10.1038/srep12669.
doi: 10.1038/srep12669
|
[31] |
姚俊强, 陈静, 迪丽努尔·托列吾别克, 等. 新疆气候水文变化趋势及面临问题思考[J]. 冰川冻土, 2021, 43(5): 1498-1511.
doi: 10.7522/j.issn.1000-0240.2021.0101
|
|
[Yao Junqiang, Chen Jing, Tuoliwubieke Dilinuer, et al. Trend of climate and hydrology change in Xinjiang and its problems thinking[J]. Journal of Glaciology and Geocryology, 2021, 43(5): 1498-1511.]
doi: 10.7522/j.issn.1000-0240.2021.0101
|
[32] |
宋佳, 徐长春, 杨媛媛, 等. 基于MODIS16的新疆干湿气候时空变化及影响因素[J]. 水土保持研究, 2019, 26(5): 210-221.
|
|
[Song Jia, Xu Changchun, Yang Yuanyuan, et al. Temporal and spatial variation characteristics of evapotranspiration and dry-wet climate in Xinjiang based on MODIS16[J]. Research of Soil and Water Conservation, 2019, 26(5): 210-221.]
|