Arid Land Geography ›› 2025, Vol. 48 ›› Issue (3): 444-454.doi: 10.12118/j.issn.1000-6060.2024.201
• Plant Ecology • Previous Articles Next Articles
Received:
2024-03-26
Revised:
2024-04-15
Online:
2025-03-25
Published:
2025-03-14
Contact:
XIA Yong
E-mail:wangfh@lzufe.edu.cn;x0991y@163.com
WANG Fuhong, XIA Yong. Spatio-temporal pattern evolution and influencing factors of main crops production in arid region: A case of Xinjiang[J].Arid Land Geography, 2025, 48(3): 444-454.
Tab. 1
Moving distance of gravity center of major crops yield in Xinjiang from 2000 to 2020 /km"
年份 | 粮食 | 棉花 | 蔬菜 | 瓜果 | 油料 | 糖料 |
---|---|---|---|---|---|---|
2000—2005 | 32.54 | 51.38 | 52.79 | 199.75 | 23.04 | 34.98 |
2005—2010 | 65.48 | 7.02 | 54.15 | 290.94 | 54.62 | 32.99 |
2010—2015 | 55.51 | 98.27 | 13.48 | 133.01 | 163.75 | 34.00 |
2015—2020 | 48.01 | 105.33 | 131.08 | 154.42 | 302.63 | 36.56 |
2000—2020 | 101.75 | 62.02 | 246.95 | 215.42 | 238.47 | 92.79 |
Tab. 2
Global Moran’s I of SAI, EAI, AAI of major crops production in Xinjiang"
作物 | 指数 | 2000年 | 2005年 | 2010年 | 2015年 | 2020年 |
---|---|---|---|---|---|---|
粮食 | SAI | 0.439 | 0.401 | 0.448 | 0.434 | 0.457 |
EAI | 0.191 | 0.225 | 0.243 | 0.318 | 0.219 | |
AAI | 0.340 | 0.343 | 0.427 | 0.441 | 0.370 | |
棉花 | SAI | 0.481 | 0.464 | 0.475 | 0.467 | 0.495 |
EAI | 0.399 | 0.435 | 0.415 | -0.022 | 0.313 | |
AAI | 0.521 | 0.482 | 0.485 | 0.306 | 0.477 | |
油料 | SAI | 0.431 | 0.372 | 0.446 | 0.432 | 0.497 |
EAI | 0.004 | 0.197 | 0.220 | -0.008 | 0.034 | |
AAI | 0.521 | 0.548 | 0.622 | 0.181 | 0.492 | |
糖料 | SAI | 0.266 | 0.351 | 0.315 | 0.402 | 0.247 |
EAI | 0.481 | 0.471 | 0.513 | 0.591 | 0.302 | |
AAI | 0.430 | 0.490 | 0.460 | 0.492 | 0.343 | |
蔬菜 | SAI | 0.199 | 0.208 | 0.239 | 0.299 | 0.233 |
EAI | 0.209 | 0.309 | 0.377 | 0.227 | 0.251 | |
AAI | 0.258 | 0.279 | 0.318 | 0.269 | 0.302 | |
瓜果 | SAI | 0.087 | 0.143 | 0.215 | 0.196 | 0.126 |
EAI | 0.243 | -0.028 | 0.112 | 0.123 | 0.082 | |
AAI | 0.175 | 0.225 | 0.317 | 0.275 | 0.217 |
Tab. 3
Dependent variable weights and model effect loadings"
类型 | 项目 | 农村居民 人均收入 | 城镇化率 | 耕地面积 | 农业用水量 | 农业支出占财政比例 | 第一产业 贡献率 | 农业机械 总动力 | 货物周转量 |
---|---|---|---|---|---|---|---|---|---|
规模比较优势 | 模型效应和因变量权数 | 0.3966 | 0.4105 | 0.3959 | 0.1936 | 0.4234 | 0.3484 | 0.4089 | 0.3820 |
模型效应负荷量 | 0.3989 | 0.3974 | 0.3868 | 0.2089 | 0.4013 | 0.3482 | 0.3958 | 0.3951 | |
效率比较优势 | 模型效应和因变量权数 | 0.3796 | 0.3508 | 0.4207 | 0.2348 | 0.4244 | 0.3144 | 0.4436 | 0.3716 |
模型效应负荷量 | 0.3905 | 0.4083 | 0.4050 | 0.1630 | 0.3969 | 0.3800 | 0.4043 | 0.3884 | |
综合比较优势 | 模型效应和因变量权数 | 0.4124 | 0.3994 | 0.4077 | 0.1337 | 0.4054 | 0.3854 | 0.4136 | 0.3934 |
模型效应负荷量 | 0.4084 | 0.3950 | 0.4184 | 0.1433 | 0.3855 | 0.3794 | 0.3921 | 0.4051 |
[1] | Liu S, Lei P F, Li X, et al. A nonseparable undesirable output modified three-stage data envelopment analysis application for evaluation of agricultural green total factor productivity in China[J]. Science of the Total Environment, 2022, 838: 155947, doi: 10.1016/j.scitotenv.2022.155947. |
[2] | 杜蓉, 柳思维, 蔡荣. 中国粮食空间生产格局演变特征及其驱动机制[J]. 经济问题, 2023(8): 92-102. |
[Du Rong, Liu Siwei, Cai Rong. The characteristics and driving mechanism of China’s grain spatial production pattern evolution[J]. On Economic Problems, 2023(8): 92-102. ] | |
[3] | 陈晓艺, 姚筠, 霍彦峰, 等. 安徽省主要气象灾害趋势演变及其对粮食总产的影响[J]. 长江流域资源与环境, 2020, 29(10): 2285-2295. |
[Chen Xiaoyi, Yao Yun, Huo Yanfeng, et al. Trends of four major meteorological disasters and the impacts on grain yield in Anhui Province[J]. Resources and Environment in the Yangtze Basin, 2020, 29(10): 2285-2295. ] | |
[4] |
屠爽爽, 简代飞, 龙花楼, 等. 广西主要农作物生产格局演变特征与机制研究[J]. 地理学报, 2022, 77(9): 2322-2337.
doi: 10.11821/dlxb202209013 |
[Tu Shuangshuang, Jian Daifei, Long Hualou, et al. Evolution characteristics and mechanism of major crops production patterns in Guangxi[J]. Acta Geographica Sinica, 2022, 77(9): 2322-2337. ]
doi: 10.11821/dlxb202209013 |
|
[5] | Liu Y, Yuan X L, Li J X, et al. Trade-offs and synergistic relationships of ecosystem services under land use change in Xinjiang from 1990 to 2020: A Bayesian network analysis[J]. Science of the Total Environment, 2023, 858: 160015, doi: 10.1016/j.scitotenv.2022.160015. |
[6] | 国家统计局. 中国统计年鉴2023[M]. 北京: 中国统计出版社, 2023. |
[National Bureau of Statistics of China. China statistical yearbook 2023[M]. Beijing: China Statistics Press, 2023. ] | |
[7] | 唐华俊, 吴文斌, 杨鹏, 等. 农作物空间格局遥感监测研究进展[J]. 中国农业科学, 2010, 43(14): 2879-2888. |
[Tang Huajun, Wu Wenbin, Yang Peng, et al. Recent progresses in monitoring crop spatial patterns by using remote sensing technologies[J]. Scientia Agricultura Sinica, 2010, 43(14): 2879-2888. ] | |
[8] | 彭晖, 张嘉望, 李博阳. 我国农产品生产集聚的时空格局及影响因素——以蔬菜生产为例[J]. 西北农林科技大学学报(社会科学版), 2017, 17(6): 81-90. |
[Peng Hui, Zhang Jiawang, Li Boyang. Spatial temporal characteristics and affecting factors of agricultural production agglomeration in China[J]. Journal of Nortuwest A & F University (Social Science Edition), 2017, 17(6): 81-90. ] | |
[9] | 李二玲, 庞安超, 朱纪广. 中国农业地理集聚格局演化及其机制[J]. 地理研究, 2012, 31(5): 885-898. |
[Li Erling, Pang Anchao, Zhu Jiguang. Analysis of the evolution path and mechanism of China’s agricultural agglomeration and geographic[J]. Geographical Research, 2012, 31(5): 885-898. ] | |
[10] | 杨宗辉, 李金锴, 韩晨雪, 等. 我国粮食生产重心变迁及其影响因素研究[J]. 农业现代化研究, 2019, 40(1): 36-43. |
[Yang Zonghui, Li Jinkai, Han Chenxue, et al. The evolution path of China’s grain production base and the influencing factors[J]. Research of Agricultural Modernization, 2019, 40(1): 36-43. ] | |
[11] | Zhen W, Qin Q D, Wei Y M. Spatio-temporal patterns of energy consumption-related GHG emissions in China’s crop production systems[J]. Energy Policy, 2017, 104: 274-284. |
[12] |
李二玲, 胥亚男, 雍雅君, 等. 农业结构调整与中国乡村转型发展——以河南省巩义市和鄢陵县为例[J]. 地理科学进展, 2018, 37(5): 698-709.
doi: 10.18306/dlkxjz.2018.05.013 |
[Li Erling, Xu Ya’nan, Yong Yajun, et al. Agricultural structure adjustment and rural transformation development in China: Taking Gongyi City and Yanling County as examples[J]. Progress in Geography, 2018, 37(5): 698-709. ]
doi: 10.18306/dlkxjz.2018.05.013 |
|
[13] |
吴娜琳, 卫怡珂, 李立, 等. 县域非粮作物空间格局及其形成机制——来自河南省宁陵县的实证分析[J]. 地理科学进展, 2023, 42(7): 1298-1310.
doi: 10.18306/dlkxjz.2023.07.006 |
[Wu Nalin, Wei Yike, Li Li, et al. Spatial distribution of non-grain crops and formation mechanism: Empirical analysis of Ningling County, Henan Province[J]. Progress in Geography, 2023, 42(7): 1298-1310. ]
doi: 10.18306/dlkxjz.2023.07.006 |
|
[14] |
任频频, 李保国, 黄峰. 农作物种植结构演变下的黄淮海旱作区小麦玉米生产时空格局[J]. 资源科学, 2022, 44(3): 436-449.
doi: 10.18402/resci.2022.03.02 |
[Ren Pinpin, Li Baoguo, Huang Feng. Spatiotemporal patterns of wheat and maize production under the evolution of crop planting structures in the Huang-Huai-Hai dry farmland, China[J]. Resources Sciences, 2022, 44(3): 436-449. ] | |
[15] |
曹永强, 李维佳, 袁立婷. 河北省主要农作物生产时空格局变化特征及安全评价[J]. 地理科学, 2018, 38(8): 1319-1327.
doi: 10.13249/j.cnki.sgs.2018.08.014 |
[Cao Yongqiang, Li Weijia, Yuan Liting. Spatio-temporal pattern variation and safety evaluation of crops in Hebei Province[J]. Scientia Geographica Sinica, 2018, 38(8): 1319-1327. ]
doi: 10.13249/j.cnki.sgs.2018.08.014 |
|
[16] | Liao C, Wang J, Dong T, et al. Using spatio-temporal fusion of Landsat-8 and MODIS data to derive phenology, biomass and yield estimates for corn and soybean[J]. Science of the Total Environment, 2019, 650: 1707-1721. |
[17] | Li J, Lei H. Tracking the spatio-temporal change of planting area of winter wheat-summer maize cropping system in the North China Plain during 2001—2018[J]. Computers and Electronics in Agriculture, 2021, 187: 106222, doi: 10.1016/j.compag.2021.106222. |
[18] | Goffart J P, Haverkort A, Storey M, et al. Potato production in northwestern Europe (Germany, France, the Netherlands, United Kingdom, Belgium): Characteristics, issues, challenges and opportunities[J]. Potato Research, 2022, 65(3): 503-547. |
[19] | Niu Y N, Xie G D, Xiao Y, et al. Spatial layout of cotton seed production based on hierarchical classification: A case study in Xinjiang, China[J]. Agriculture, 2021, 11(8): 1-23. |
[20] | Yang Z N, Tang J J, Yu M, et al. Sustainable cotton production through increased competitiveness: Analysis of comparative advantage and influencing factors of cotton production in Xinjiang, China[J]. Agronomy 2022, 12(10): 22-39. |
[21] | 张志高, 范留飞, 马晓慧, 等. 2007—2015年新疆粮食增产格局及贡献因素研究[J]. 干旱区资源与环境, 2018, 32(9): 71-75. |
[Zhang Zhigao, Fan Liufei, Ma Xiaohui, et al. Spatial-temporal patterns of Xinjiang’s grain output increase and the contribution factors during 2007—2015[J]. Journal of Arid Land Resources and Environment, 2018, 32(9): 71-75. ] | |
[22] |
王福红, 夏咏. 中国耕地集约化利用不平衡不充分特征及成因[J]. 资源科学, 2024, 46(1): 130-144.
doi: 10.18402/resci.2024.01.10 |
[Wang Fuhong, Xia Yong. Characteristics of unbalanced and inadequate intensive use of cultivated land in China and causes[J]. Resources Science, 2024, 46(1): 130-144. ]
doi: 10.18402/resci.2024.01.10 |
|
[23] | 姚成胜, 杨一单, 殷伟. 中国非主粮生产的地理集聚特征及其空间演化机制[J]. 经济地理, 2020, 40(12): 155-165. |
[Yao Chengsheng, Yang Yidan, Yin Wei. Geographical agglomeration characteristics of China’s non-primary grain production and its spatial evolution mechanism[J]. Economic Geography, 2020, 40(12): 155-165. ] | |
[24] |
梁常安, 杜国明, 郝均. 中国农业技术创新的时空格局及其诱致性[J]. 干旱区地理, 2023, 46(4): 667-677.
doi: 10.12118/j.issn.1000-6060.2022.074 |
[Liang Chang’an, Du Guoming, Hao Jun. Spatial-temporal pattern and inducement of agricultural technology innovation in China[J]. Arid Land Geography, 2023, 46(4): 667-677. ]
doi: 10.12118/j.issn.1000-6060.2022.074 |
|
[25] | 谭晓艳, 张晓恒, 游良志. 自然因素和政策干预对中国棉花生产布局变迁的影响[J]. 农业技术经济, 2020(4): 79-93. |
[Tan Xiaoyan, Zhang Xiaoheng, You Liangzhi. A study on the impact of natural factors and policy interventions on the dynamics of cotton production[J]. Journal of Agrotechnical Economics, 2020(4): 79-93. ] | |
[26] | 张建华. 一种简便易用的基尼系数计算方法[J]. 山西农业大学学报(社会科学版), 2007, 23(3): 275-278, 283. |
[Zhang Jianhua. An convenient method to calculate Gini coefficient[J]. Shanxi Agricultural University (Social Science Edition), 2007, 23(3): 275-278, 283. ] | |
[27] | 赵文智, 任珩, 杜军, 等. 河西走廊绿洲生态建设和农业发展的若干思考与建议[J]. 中国科学院院刊, 2023, 38(3): 424-434. |
[Zhao Wenzhi, Ren Heng, Du Jun, et al. Thoughts and suggestions on oasis ecological construction and agricultural development in Hexi Corridor[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(3): 424-434. ] | |
[28] |
赵锐锋, 王福红, 张丽华, 等. 黑河中游地区耕地景观演变及社会经济驱动力分析[J]. 地理科学, 2017, 37(6): 920-928.
doi: 10.13249/j.cnki.sgs.2017.06.014 |
[Zhao Ruifeng, Wang Fuhong, Zhang Lihua, et al. Dynamic of farmland landscape and its socioeconomic driving forces in the middle reaches of the Heihe River[J]. Scientia Geographica Sinica, 2017, 37(6): 920-928. ]
doi: 10.13249/j.cnki.sgs.2017.06.014 |
|
[29] |
刘珍环, 杨鹏, 吴文斌, 等. 近30年中国农作物种植结构时空变化分析[J]. 地理学报, 2016, 71(5): 840-851.
doi: 10.11821/dlxb201605012 |
[Liu Zhenhuan, Yang Peng, Wu Wenbin et al. Spatio-temporal changes in Chinese crop patterns over the past three decades[J]. Acta Geographica Sinica, 2016, 71(5): 840-851. ]
doi: 10.11821/dlxb201605012 |
|
[30] | 栾军强, 王荣成, 朱子媛, 等. 山东省粮食供需变动下农业生产格局研究[J]. 中国农业资源与区划, 2021, 42(8): 201-209. |
[Luan Junqiang, Wang Rongcheng, Zhu Ziyuan, et al. Study on agricultural production pattern under the change of grain supply and demand in Shandong Province[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2021, 42(8): 201-209. ] |
|