Arid Land Geography ›› 2024, Vol. 47 ›› Issue (7): 1156-1164.doi: 10.12118/j.issn.1000-6060.2023.566
• Climatology and Hydrology • Previous Articles Next Articles
JIA Shangkun1(), WEI Junfeng1(), ZHANG Fagang1, WANG Xin1,2
Received:
2023-10-11
Revised:
2024-01-27
Online:
2024-07-25
Published:
2024-07-30
Contact:
WEI Junfeng
E-mail:jsk0618@163.com;weijunfeng@hnust.edu.cn
JIA Shangkun, WEI Junfeng, ZHANG Fagang, WANG Xin. Research review of mass changes for lake-terminating glaciers in the Himalayas[J].Arid Land Geography, 2024, 47(7): 1156-1164.
[1] | 杨雪雯, 王宁练, 梁倩, 等. 近60 a天山北坡冰川变化研究[J]. 干旱区地理, 2023, 46(7): 1073-1083. |
[Yang Xuewen, Wang Ninglian, Liang Qian, et al. Glacier changes on the north slope of Tianshan Mountains in recent 60 years[J]. Arid Land Geography, 2023, 46(7): 1073-1083.] | |
[2] |
刘玉婷, 刘景时, 古丽格纳·哈力木拉提, 等. 喜马拉雅山北坡典型冰川流域水文过程比较研究[J]. 冰川冻土, 2022, 44(3): 1063-1069.
doi: 10.7522/j.issn.1000-0240.2022.099 |
[Liu Yuting, Liu Jingshi, Halimulati Guligena, et al. Comparison of hydrological regime between two glacier-fed watersheds in the north Himalayas[J]. Journal of Glaciology and Geocryology, 2022, 44(3): 1063-1069.]
doi: 10.7522/j.issn.1000-0240.2022.099 |
|
[3] | Kulkarni A V, Karyakarte Y. Observed changes in Himalayan glaciers[J]. Current Science, 2014, 106(2): 237-244. |
[4] | Pandey P, Ali S N, Champati Ray P K. Glacier-glacial lake interactions and glacial lake development in the central Himalaya, India (1994—2017)[J]. Journal of Earth Science, 2021, 32: 1563-1574. |
[5] | Tweed F S, Carrivick J L. Deglaciation and proglacial lakes[J]. Geology Today, 2015, 31(3): 96-102. |
[6] | Truffer M, Motyka R J. Where glaciers meet water: Subaqueous melt and its relevance to glaciers in various settings[J]. Reviews of Geophysics, 2016, 54(1): 220-239. |
[7] | Pronk J B, Bolch T, King O, et al. Contrasting surface velocities between lake- and land-terminating glaciers in the Himalayan region[J]. The Cryosphere, 2021, 15(12): 5577-5599. |
[8] | Nick F M, Vieli A, Howat I M, et al. Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus[J]. Nature Geoscience, 2009, 2: 110-114. |
[9] | Benn D I, Åström J A. Calving glaciers and ice shelves[J]. Advances in Physics: X, 2018, 3(1): 1513819, doi: 10.1080/23746149.2018.1513819. |
[10] | Shugar D H, Burr A, Haritashya U K, et al. Rapid worldwide growth of glacial lakes since 1990[J]. Nature Climate Change, 2020, 10: 939-945. |
[11] | Zhang G Q, Chen W F, Li G, et al. Lake water and glacier mass gains in the northwestern Tibetan Plateau observed from multi-sensor remote sensing data: Implication of an enhanced hydrological cycle[J]. Remote Sensing of Environment, 2020, 237: 111554, doi: 10.1016/j.rse.2019.111554. |
[12] | Wei J F, Liu S Y, Wang X, et al. Longbasaba glacier recession and contribution to its proglacial lake volume between 1988 and 2018[J]. Journal of Glaciology, 2021, 67(263): 473-484. |
[13] | Song C Q, Sheng Y W, Wang J D, et al. Heterogeneous glacial lake changes and links of lake expansions to the rapid thinning of adjacent glacier termini in the Himalayas[J]. Geomorphology, 2017, 280: 30-38. |
[14] | Wang X, Guo X Y, Yang C D, et al. Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from Landsat images[J]. Earth System Science Data, 2020, 12(3): 2169-2182. |
[15] |
Taylor C, Robinson T R, Dunning S, et al. Glacial lake outburst floods threaten millions globally[J]. Nature Communications, 2023, 14: 487, doi: 10.1038/s41467-023-36033-x.
pmid: 36750561 |
[16] | Nie Y, Liu Q, Wang J D, et al. An inventory of historical glacial lake outburst floods in the Himalayas based on remote sensing observations and geomorphological analysis[J]. Geomorphology, 2018, 308: 91-106. |
[17] | Consortium R. Randolph glacier inventory: A dataset of global glacier outlines: Version 6.0[R]. Colorado: National Snow and Ice Data Center, USA, 2017. |
[18] |
King O, Bhattacharya A, Bhambri R, et al. Glacial lakes exacerbate Himalayan glacier mass loss[J]. Scientific Reports, 2019, 9: 18145, doi: 10.1038/s41598-019-53733-x.
pmid: 31792244 |
[19] |
张太刚, 王伟财, 高坛光, 等. 亚洲高山区冰湖溃决洪水事件回顾[J]. 冰川冻土, 2021, 43(6): 1673-1692.
doi: 10.7522/j.issn.1000-0240.2021.0066 |
[Zhang Taigang, Wang Weicai, Gao Tanguang, et al. Glacial lake outburst floods on the High Mountain Asia: A review[J]. Journal of Glaciology and Geocryology, 2021, 43(6): 1673-1692.]
doi: 10.7522/j.issn.1000-0240.2021.0066 |
|
[20] | Zhang G Q, Bolch T, Yao T D, et al. Underestimated mass loss from lake-terminating glaciers in the greater Himalaya[J]. Nature Geoscience, 2023, 16: 333-338. |
[21] | Consortium R. Randolph glacier inventory: A dataset of global glacier outlines: Version 7.0[R]. Colorado: National Snow and Ice Data Center, USA, 2023. |
[22] |
Bolch T, Kulkarni A, Kääb A, et al. The state and fate of Himalayan glaciers[J]. Science, 2012, 336(6079): 310-314.
doi: 10.1126/science.1215828 pmid: 22517852 |
[23] | Thakuri S, Salerno F, Smiraglia C, et al. Tracing glacier changes since the 1960s on the south slope of Mt. Everest (central southern Himalaya) using optical satellite imagery[J]. The Cryosphere, 2014, 8(4): 1297-1315. |
[24] | Fan Y B, Ke C Q, Zhou X B, et al. Glacier mass-balance estimates over High Mountain Asia from 2000 to 2021 based on ICESat-2 and NASADEM[J]. Journal of Glaciology, 2023, 69(275): 500-512. |
[25] | Maurer J M, Schaefer J M, Rupper S, et al. Acceleration of ice loss across the Himalayas over the past 40 years[J]. Science Advances, 2019, 5(6): eaav7266, doi: 10.1126/sciadv.aav7266. |
[26] | Azam M F, Wagnon P, Ramanathan A, et al. From balance to imbalance: A shift in the dynamic behaviour of Chhota Shigri glacier, western Himalaya, India[J]. Journal of Glaciology, 2012, 58(208): 315-324. |
[27] | Dehecq A, Gourmelen N, Gardner A S, et al. Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia[J]. Nature Geoscience, 2019, 12: 22-27. |
[28] |
魏俊锋, 张特, 张勇, 等. 入湖冰川物质平衡序列重建与分析——以喜马拉雅山北坡龙巴萨巴冰川为例[J]. 冰川冻土, 2022, 44(3): 914-929.
doi: 10.7522/j.issn.1000-0240.2022.0087 |
[Wei Junfeng, Zhang Te, Zhang Yong, et al. Reconstruction and analysis of mass balance for lake-terminating glaciers: A case study of Longbasaba glacier, north Himalaya[J]. Journal of Glaciology and Geocryology, 2022, 44(3): 914-929.]
doi: 10.7522/j.issn.1000-0240.2022.0087 |
|
[29] | Zhang G Q, Bolch T, Allen S, et al. Glacial lake evolution and glacier-lake interactions in the Poiqu River Basin, central Himalaya, 1964—2017[J]. Journal of Glaciology, 2019, 65(251): 347-365. |
[30] | Agarwal V, de Vries M V W, Haritashya U K, et al. Long-term analysis of glaciers and glacier lakes in the central and eastern Himalaya[J]. Science of the Total Environment, 2023, 898: 165598, doi: 10.1016/j.scitotenv.2023.165598. |
[31] | King O, Dehecq A, Quincey D, et al. Contrasting geometric and dynamic evolution of lake and land-terminating glaciers in the central Himalaya[J]. Global and Planetary Change, 2018, 167: 46-60. |
[32] | Jiang S, Nie Y, Liu Q, et al. Glacier change, supraglacial debris expansion and glacial lake evolution in the Gyirong River Basin, central Himalayas, between 1988 and 2015[J]. Remote Sensing, 2018, 10(7): 986, doi: 10.3390/rs10070986. |
[33] |
徐道明, 冯清华. 西藏喜马拉雅山区危险冰湖及其溃决特征[J]. 地理学报, 1989, 44(3): 343-352.
doi: 10.11821/xb198903010 |
[Xu Daoming, Feng Qinghua. Dangerous glacial lake and outburst features in Xizang Himalayas[J]. Acta Geographica Sinica, 1989, 44(3): 343-352.]
doi: 10.11821/xb198903010 |
|
[34] | 汤明高, 陈浩文, 赵欢乐, 等. 青藏高原冰湖溃决灾害隐患识别、发育规律及危险性评价[J]. 地质通报, 2023, 42(5): 730-742. |
[Tang Minggao, Chen Haowen, Zhao Huanle, et al. Identification, development law and risk assessment of the hidden dangers of glacial lake outburst disasters on the Qinghai-Tibet Plateau[J]. Geological Bulletin of China, 2023, 42(5): 730-742.] | |
[35] |
Cook K L, Andermann C, Gimbert F, et al. Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya[J]. Science, 2018, 362(6410): 53-57.
doi: 10.1126/science.aat4981 pmid: 30287655 |
[36] | Zhang G Q, Yao T D, Xie H J, et al. An inventory of glacial lakes in the Third Pole region and their changes in response to global warming[J]. Global and Planetary Change, 2015, 131: 148-157. |
[37] | Pelto B M, Maussion F, Menounos B, et al. Bias-corrected estimates of glacier thickness in the Columbia River Basin, Canada[J]. Journal of Glaciology, 2020, 66(260): 1051-1063. |
[38] | Welty E, Zemp M, Navarro F, et al. Worldwide version-controlled database of glacier thickness observations[J]. Earth System Science Data, 2020, 12(4): 3039-3055. |
[39] | Li C, Jiang L M, Liu L, et al. Regional and altitude-dependent estimate of the SRTM C/X-band radar penetration difference on High Mountain Asia glaciers[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 4244-4253. |
[40] | Zhao F Y, Long D, Li X D, et al. Rapid glacier mass loss in the southeastern Tibetan Plateau since the year 2000 from satellite observations[J]. Remote Sensing of Environment, 2022, 270: 112853, doi: 10.1016/j.rse.2021.112853. |
[41] | Zhou Y S, Li X, Zheng D H, et al. Evolution of geodetic mass balance over the largest lake-terminating glacier in the Tibetan Plateau with a revised radar penetration depth based on multi-source high-resolution satellite data[J]. Remote Sensing of Environment, 2022, 275: 113029, doi: 10.1016/j.rse.2022.113029. |
[42] | Werder M A, Huss M, Paul F, et al. A Bayesian ice thickness estimation model for large-scale applications[J]. Journal of Glaciology, 2020, 66(255): 137-152. |
[43] | Millan R, Mouginot J, Rabatel A, et al. Ice velocity and thickness of the world’s glaciers[J]. Nature Geoscience, 2022, 15: 124-129. |
[44] | Moholdt G, Nuth C, Hagen J O, et al. Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry[J]. Remote Sensing of Environment, 2010, 114(11): 2756-2767. |
[45] | Zhao C X, Yang W, Miles E, et al. Thinning and surface mass balance patterns of two neighbouring debris-covered glaciers in the southeastern Tibetan Plateau[J]. The Cryosphere, 2023, 17(9): 3895-3913. |
[46] | Denzinger F, Machguth H, Barandun M, et al. Geodetic mass balance of Abramov glacier from 1975 to 2015[J]. Journal of Glaciology, 2021, 67(262): 331-342. |
[47] | Baurley N R, Robson B A, Hart J K. Long-term impact of the proglacial lake Jökulsárlón on the flow velocity and stability of Breiðamerkurjökull glacier, Iceland[J]. Earth Surface Processes and Landforms, 2020, 45(11): 2647-2663. |
[48] | Main B, Copland L, Smeda B, et al. Terminus change of Kaskawulsh glacier, Yukon, under a warming climate: Retreat, thinning, slowdown and modified proglacial lake geometry[J]. Journal of Glaciology, 2023, 69(276): 936-952. |
[49] |
Lee E, Carrivick J L, Quincey D J, et al. Accelerated mass loss of Himalayan glaciers since the Little Ice Age[J]. Scientific Reports, 2021, 11: 24284, doi: 10.1038/s41598-021-03805-8.
pmid: 34931039 |
[50] | Tsutaki S, Fujita K, Nuimura T, et al. Contrasting thinning patterns between lake- and land-terminating glaciers in the Bhutanese Himalaya[J]. The Cryosphere, 2019, 13(10): 2733-2750. |
[51] | Carrivick J L, Tweed F S. A global assessment of the societal impacts of glacier outburst floods[J]. Global and Planetary Change, 2016, 144: 1-16. |
[52] |
Stubblefield A G, Creyts T T, Kingslake J, et al. Modeling oscillations in connected glacial lakes[J]. Journal of Glaciology, 2019, 65(253): 745-758.
doi: 10.1017/jog.2019.46 |
[53] | Bolch T, Peters J, Yegorov A, et al. Identification of potentially dangerous glacial lakes in the northern Tien Shan[J]. Natural Hazards, 2011, 59: 1691-1714. |
[54] | Boyce E S, Motyka R J, Truffer M. Flotation and retreat of a lake-calving terminus, Mendenhall glacier, southeast Alaska, USA[J]. Journal of Glaciology, 2007, 53(181): 211-224. |
[55] | Todd J, Christoffersen P, Zwinger T, et al. A full-Stokes 3-D calving model applied to a large Greenlandic glacier[J]. Journal of Geophysical Research: Earth Surface, 2018, 123(3): 410-432. |
[56] | Cook S J, Christoffersen P, Todd J, et al. Coupled modelling of subglacial hydrology and calving-front melting at Store glacier, west Greenland[J]. The Cryosphere, 2020, 14(3): 905-924. |
[57] | Kneib M, Miles E S, Buri P, et al. Sub-seasonal variability of supraglacial ice cliff melt rates and associated processes from time-lapse photogrammetry[J]. The Cryosphere, 2022, 16(11): 4701-4725. |
[58] | Buri P, Miles E S, Steiner J F, et al. A physically based 3-D model of ice cliff evolution over debris-covered glaciers[J]. Journal of Geophysical Research: Earth Surface, 2016, 121(12): 2471-2493. |
[59] | Holland D M, Thomas R H, de Young B, et al. Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters[J]. Nature Geoscience, 2008, 1: 659-664. |
[60] | Carroll D, Sutherland D A, Shroyer E L, et al. Modeling turbulent subglacial meltwater plumes: Implications for fjord-scale buoyancy-driven circulation[J]. Journal of Physical Oceanography, 2015, 45(8): 2169-2185. |
[61] | Burchard H, Bolding K, Jenkins A, et al. The vertical structure and entrainment of subglacial melt water plumes[J]. Journal of Advances in Modeling Earth Systems, 2022, 14(3): e2021MS002925, doi: 10.1029/2021MS002925. |
[62] | Slater D A, Straneo F. Submarine melting of glaciers in Greenland amplified by atmospheric warming[J]. Nature Geoscience, 2022, 15: 794-799. |
[63] | Cook S J, Christoffersen P, Todd J. A fully-coupled 3D model of a large Greenlandic outlet glacier with evolving subglacial hydrology, frontal plume melting and calving[J]. Journal of Glaciology, 2022, 68(269): 486-502. |
[64] | Morton B R, Taylor G I, Turner J S. Turbulent gravitational convection from maintained and instantaneous sources[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1956, 234(1196): 1-23. |
[65] | Holland D M, Jenkins A. Modeling thermodynamic ice-ocean interactions at the base of an ice shelf[J]. Journal of Physical Oceanography, 1999, 29(8): 1787-1800. |
[66] | Jenkins A. Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers[J]. Journal of Physical Oceanography, 2011, 41(12): 2279-2294. |
[67] | Jackson R H, Shroyer E L, Nash J D, et al. Near-glacier surveying of a subglacial discharge plume: Implications for plume parameterizations[J]. Geophysical Research Letters, 2017, 44(13): 6886-6894. |
[68] | Slater D, Nienow P, Sole A, et al. Spatially distributed runoff at the grounding line of a large Greenlandic tidewater glacier inferred from plume modelling[J]. Journal of Glaciology, 2017, 63(238): 309-323. |
[69] | Kimura S, Holland P R, Jenkins A, et al. The effect of meltwater plumes on the melting of a vertical glacier face[J]. Journal of Physical Oceanography, 2014, 44(12): 3099-3117. |
[70] | Cowton T, Slater D, Sole A, et al. Modeling the impact of glacial runoff on fjord circulation and submarine melt rate using a new subgrid-scale parameterization for glacial plumes[J]. Journal of Geophysical Research: Oceans, 2015, 120(2): 796-812. |
[71] | Carroll D, Sutherland D A, Hudson B, et al. The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords[J]. Geophysical Research Letters, 2016, 43(18): 9739-9748. |
[72] | Bartholomaus T C, Stearns L A, Sutherland D A, et al. Contrasts in the response of adjacent fjords and glaciers to ice-sheet surface melt in west Greenland[J]. Annals of Glaciology, 2016, 57(73): 25-38. |
[73] | Mankoff K D, Straneo F, Cenedese C, et al. Structure and dynamics of a subglacial discharge plume in a Greenlandic fjord[J]. Journal of Geophysical Research: Oceans, 2016, 121(12): 8670-8688. |
[74] | Stevens L A, Straneo F, Das S B, et al. Linking glacially modified waters to catchment-scale subglacial discharge using autonomous underwater vehicle observations[J]. The Cryosphere, 2016, 10(1): 417-432. |
[75] | Xu Y, Rignot E, Fenty I, et al. Subaqueous melting of Store glacier, west Greenland from three-dimensional, high-resolution numerical modeling and ocean observations[J]. Geophysical Research Letters, 2013, 40(17): 4648-4653. |
[76] | Slater D A, Nienow P W, Goldberg D N, et al. A model for tidewater glacier undercutting by submarine melting[J]. Geophysical Research Letters, 2017, 44(5): 2360-2368. |
[77] | van den Broeke M R, Enderlin E M, Howat I M, et al. On the recent contribution of the Greenland ice sheet to sea level change[J]. The Cryosphere, 2016, 10(5): 1933-1946. |
[78] | 晋子振, 秦翔, 赵求东, 等. 祁连山西段老虎沟流域消融季径流变化特征研究[J]. 干旱区地理, 2023, 46(2): 178-190. |
[Jin Zizhen, Qin Xiang, Zhao Qiudong, et al. Characteristics of runoff variation during ablation season in Laohugou Watershed of western Qilian Mountains[J]. Arid Land Geography, 2023, 46(2): 178-190.] | |
[79] | 谢自楚, 刘潮海. 冰川学导论[M]. 上海: 上海科学普及出版社, 2010: 85-158. |
[Xie Zichu, Liu Chaohai. Introduction to glaciation[M]. Shanghai: Shanghai Popular Science Press, 2010: 85-158.] | |
[80] | Yao T D, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2: 663-667. |
[81] | Mölg T, Maussion F, Scherer D. Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia[J]. Nature Climate Change, 2014, 4: 68-73. |
[82] | Maussion F, Scherer D, Mölg T, et al. Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia reanalysis[J]. Journal of Climate, 2014, 27(5): 1910-1927. |
[83] | Fugger S, Fyffe C L, Fatichi S, et al. Understanding monsoon controls on the energy and mass balance of glaciers in the central and eastern Himalaya[J]. The Cryosphere, 2022, 16(5): 1631-1652. |
[84] | Bohner J. General climatic controls and topoclimatic variations in central and high Asia[J]. Boreas, 2006, 35(2): 279-295. |
[85] | Bookhagen B, Burbank D W. Topography, relief, and TRMM-derived rainfall variations along the Himalaya[J]. Geophysical Research Letters, 2006, 33(13): L08405, doi: 10.1029/2006GL026037. |
[86] | Worni R, Huggel C, Stoffel M. Glacial lakes in the Indian Himalayas: From an area-wide glacial lake inventory to on-site and modeling based risk assessment of critical glacial lakes[J]. Science of the Total Environment, 2013, 468: S71-S84. |
[87] | 张东启, 效存德, 刘伟刚. 喜马拉雅山区1951—2010年气候变化事实分析[J]. 气候变化研究进展, 2012, 8(2): 110-118. |
[Zhang Dongqi, Xiao Cunde, Liu Weigang. Analysis on Himalayan climate change in 1951—2010[J]. Climate Change Research, 2012, 8(2): 110-118.] | |
[88] | Fried M J, Catania G A, Bartholomaus T C, et al. Distributed subglacial discharge drives significant submarine melt at a Greenland tidewater glacier[J]. Geophysical Research Letters, 2015, 42(21): 9328-9336. |
[89] | Sutherland J L, Carrivick J L, Gandy N, et al. Proglacial lakes control glacier geometry and behavior during recession[J]. Geophysical Research Letters, 2020, 47(19): e2020GL088865, doi: 10.1029/2020GL088865. |
[90] | Werder M A, Hewitt I J, Schoof C G, et al. Modeling channelized and distributed subglacial drainage in two dimensions[J]. Journal of Geophysical Research: Earth Surface, 2013, 118(4): 2140-2158. |
[91] | Sugden D E, Clapperton C M, Knight P G. A jökulhlaup near Søndre Strømfjord, west Greenland, and some effects on the ice-sheet margin[J]. Journal of Glaciology, 1985, 31(109): 366-368. |
[92] | Carrivick J L, Tweed F S, Sutherland J L, et al. Toward numerical modeling of interactions between ice-marginal proglacial lakes and glaciers[J]. Frontiers in Earth Science, 2020, 8: 577068, doi: 10.3389/feart.2020.577068. |
[93] | Mallalieu J, Carrivick J L, Quincey D J, et al. Calving seasonality associated with melt-undercutting and lake ice cover[J]. Geophysical Research Letters, 2020, 47(8): e2019GL086561, doi: 10.1029/2019GL086561. |
[94] | van Wyk de Vries M, Ito E, Shapley M, et al. Physical limnology and sediment dynamics of Lago Argentino: The world’s largest ice-contact lake[J]. Journal of Geophysical Research: Earth Surface, 2022, 127(3): e2022JF006598, doi: 10.1029/2022JF006598. |
[95] | Östrem G. Ice melting under a thin layer of moraine, and the existence of ice cores in moraine ridges[J]. Geografiska Annaler, 1959, 41(4): 228-230. |
[96] | Reznichenko N, Davies T, Shulmeister J, et al. Effects of debris on ice-surface melting rates: An experimental study[J]. Journal of Glaciology, 2010, 56(197): 384-394. |
[97] | Veh G, Korup O, Walz A. Hazard from Himalayan glacier lake outburst floods[J]. Proceedings of the National Academy of Sciences, 2020, 117(2): 907-912. |
|