Arid Land Geography ›› 2024, Vol. 47 ›› Issue (7): 1127-1135.doi: 10.12118/j.issn.1000-6060.2024.105
• The Third Xinjiang Scientific Expedition • Previous Articles Next Articles
SHI Yudong1(), WANG Shengjie1(), ZHANG Mingjun1, ZHU Chenggang2, CHE Yanjun3
Received:
2024-02-23
Revised:
2024-05-07
Online:
2024-07-25
Published:
2024-07-30
Contact:
WANG Shengjie
E-mail:syd_1995@126.com;geowang@126.com
SHI Yudong, WANG Shengjie, ZHANG Mingjun, ZHU Chenggang, CHE Yanjun. Spatial distribution characteristics of stable hydrogen and oxygen isotopes in surface waters on the northern slope of the Kunlun Mountains[J].Arid Land Geography, 2024, 47(7): 1127-1135.
[1] | Bowen G J, Cai Z Y, Fiorella R P, et al. Isotopes in the water cycle: Regional- to global-scale patterns and applications[J]. Annual Review of Earth and Planetary Sciences, 2019, 47(1): 453-479. |
[2] |
Zhang M J, Wang S J. A review of precipitation isotope studies in China: Basic pattern and hydrological process[J]. Journal of Geographical Sciences, 2016, 26(7): 921-938.
doi: 10.1007/s11442-016-1307-y |
[3] | Zhang M J, Wang S J. Precipitation isotopes in the Tianshan Mountains as a key to water cycle in arid Central Asia[J]. Sciences in Cold and Arid Regions, 2018, 10(1): 27-37. |
[4] | Craig H, Gordon L. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere[C]// Tongiorgi E. Stable Isotopes in Oceanographic Studies and Paleotemperatures. Pisa: CNR-Laboratorio di Geologia Nucleare, 1965: 9-130. |
[5] |
Galewsky J, Steen-Larsen H C, Field R D, et al. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle[J]. Reviews of Geophysics, 2016, 54(4): 809-865.
doi: 10.1002/2015rg000512 pmid: 32661517 |
[6] | Dee S G, Bailey A, Conroy J L, et al. Water isotopes, climate variability, and the hydrological cycle: Recent advances and new frontiers[J]. Environmental Research: Climate, 2023, 2: 022002, doi: 10.1088/2752-5295/accbe1. |
[7] | Xia Z Y, Welker J M, Winnick M J. The seasonality of deuterium excess in non-polar precipitation[J]. Global Biogeochemical Cycles, 2022, 36(10): e2021GB007245, doi: 10.1029/2021GB007245. |
[8] | Wang D, Tian L D, Risi C, et al. Vehicle-based in situ observations of the water vapor isotopic composition across China: Spatial and seasonal distributions and controls[J]. Atmospheric Chemistry and Physics, 2023, 23(6): 3409-3433. |
[9] | Harrington T S, Nusbaumer J, Skinner C B. The contribution of local and remote transpiration, ground evaporation, and canopy evaporation to precipitation across North America[J]. Journal of Geophysical Research: Atmospheres, 2023, 128(7): e2022JD037290, doi: 10.1029/2022JD037290. |
[10] |
Bershaw J, Lechler A R. The isotopic composition of meteoric water along altitudinal transects in the Tian Shan of Central Asia[J]. Chemical Geology, 2019, 516: 68-78.
doi: 10.1016/j.chemgeo.2019.03.032 |
[11] | Hren M, Bookhagen B, Blisniuk P, et al. δ18O and δD of streamwaters across the Himalaya and Tibetan Plateau: Implications for moisture sources and paleoelevation reconstructions[J]. Earth and Planetary Science Letters, 2009, 288(1-2): 20-32. |
[12] | 姚俊强, 李漠岩, 迪丽努尔·托列吾别克, 等. 不同时间尺度下新疆气候“暖湿化”特征[J]. 干旱区研究, 2022, 39(2): 333-346. |
[Yao Junqiang, Li Moyan, Tuoliewubieke Dilinuer, et al. The assessment on “warming-wetting” trend in Xinjiang at multi-scale during 1961—2019[J]. Arid Zone Research, 2022, 39(2): 333-346.] | |
[13] | Ma Q R, Zhang J, Ma Y J, et al. How do multiscale interactions affect extreme precipitation in eastern Central Asia?[J]. Journal of Climate, 2021, 34(18): 7475-7491. |
[14] |
陈亚宁, 李稚, 方功焕, 等. 气候变化对中亚天山山区水资源影响研究[J]. 地理学报, 2017, 72(1): 18-26.
doi: 10.11821/dlxb201701002 |
[Chen Yaning, Li Zhi, Fang Gonghuan, et al. Impact of climate change on water resources in the Tianshan Mountains, Central Asia[J]. Acta Geographica Science, 2017, 72(1): 18-26.] | |
[15] | 姚俊强, 杨青, 毛炜峄, 等. 西北干旱区大气水分循环要素变化研究进展[J]. 干旱区研究, 2018, 35(2): 269-276. |
[Yao Junqiang, Yang Qing, Mao Weiyi, et al. Progress of study on variation of atmospheric water cycle factors over arid region in northwest China[J]. Arid Zone Research, 2018, 35(2): 269-276.] | |
[16] | Kong Y L, Pang Z H. A positive altitude gradient of isotopes in the precipitation over the Tianshan Mountains: Effects of moisture recycling and sub-cloud evaporation[J]. Journal of Hydrology, 2016, 542: 222-230. |
[17] | Wang S J, Zhang M J, Che Y J, et al. Contribution of recycled moisture to precipitation in oases of arid Central Asia: A stable isotope approach[J]. Water Resources Research, 2016, 52(4): 3246-3257. |
[18] | Wang S J, Wang L W, Zhang M J, et al. Quantifying moisture recycling of a leeward oasis in arid Central Asia using a Bayesian isotopic mixing model[J]. Journal of Hydrology, 2022, 613: 128459, doi: 10.1016/j.jhydrol.2022.128459. |
[19] | Shi Y D, Wang S J, Wang L W, et al. Isotopic evidence in modern precipitation for the westerly meridional movement in Central Asia[J]. Atmospheric Research, 2021, 259: 105698, doi: 10.1016/j.atmosres.2021.105698. |
[20] | Wang S J, Zhang M J, Crawford J, et al. The effect of moisture source and synoptic conditions on precipitation isotopes in arid Central Asia[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(5): 2667-2682. |
[21] | Yu W S, Tian L D, Risi C, et al. δ18O records in water vapor and an ice core from the eastern Pamir Plateau: Implications for paleoclimate reconstructions[J]. Earth and Planetary Science Letters, 2016, 456: 146-156. |
[22] | Kendall C, Coplen T B. Distribution of oxygen-18 and deuterium in river waters across the United States[J]. Hydrological Processes, 2001, 15(7): 1363-1393. |
[23] | Bershaw J, Penny S M, Garzione C N. Stable isotopes of modern water across the Himalaya and eastern Tibetan Plateau: Implications for estimates of paleoelevation and paleoclimate[J]. Journal of Geophysical Research: Atmospheres, 2012, 117: D02110, doi: 10.1029/2011JD016132. |
[24] | Fan X M, Gao J, Zhao A B, et al. Spatial variability of stable isotopes in river water over the Tibetan Plateau[J]. Hydrological Processes, 2023, 37(10): e15012, doi: 10.1002/hyp.15012. |
[25] | Ren W, Yao T D, Xie S Y, et al. Controls on the stable isotopes in precipitation and surface waters across the southeastern Tibetan Plateau[J]. Journal of Hydrology, 2017, 545: 276-287. |
[26] | Liu Q, Tian L D, Wang J L, et al. A study of longitudinal and altitudinal variations in surface water stable isotopes in west Pamir, Tajikistan[J]. Atmospheric Research, 2015, 153: 10-18. |
[27] | Wu H W, Wu J L, Li J, et al. Spatial variations of hydrochemistry and stable isotopes in mountainous river water from the Central Asian headwaters of the Tajikistan Pamirs[J]. Catena, 2020, 193: 104639, doi: 10.1016/j.catena.2020.104639. |
[28] | 陈曦. 中国干旱区自然地理[M]. 北京: 科学出版社, 2010: 25-36. |
[Chen Xi. Physical geography of arid land in China[M]. Beijing: Science Press, 2010: 25-36.] | |
[29] | 王世江. 中国新疆河湖全书[M]. 北京: 中国水利水电出版社, 2010. |
[Wang Shijiang. The rivers and lakes in Xinjiang, China[M]. Beijing: China Water & Power Press, 2010.] | |
[30] | Yao J Q, Chen Y N, Guan X F, et al. Recent climate and hydrological changes in a mountain-basin system in Xinjiang, China[J]. Earth-Science Reviews, 2022, 226: 103957, doi: 10.1016/j.earscirev.2022.103957. |
[31] | 丁林, 许强, 张利云, 等. 青藏高原河流氧同位素区域变化特征与高度预测模型建立[J]. 第四纪研究, 2009, 29(1): 1-12. |
[Ding Lin, Xu Qiang, Zhang Liyun, et al. Regional variation of river water oxygen isotope and empirical elevation precipitation models in Tibetan Plateau[J]. Quaternary Sciences, 2009, 29(1): 1-12.] | |
[32] | 刘琴. 青藏高原及其周边地区地表水氢氧稳定同位素空间变化特征[D]. 重庆: 西南大学, 2014. |
[Liu Qin. Variations of river water stable isotopes on the Tibetan Plateau and adjacent regions[D]. Chongqing: Southwest University, 2014.] | |
[33] | 王文祥, 王瑞久, 李文鹏, 等. 塔里木盆地河水氢氧同位素与水化学特征分析[J]. 水文地质工程地质, 2013, 40(4): 29-35. |
[Wang Wenxiang, Wang Ruijiu, Li Wenpeng, et al. Analysis of stable isotopes and hydrochemistry of rivers in Tarim Basin[J]. Hydrogeology and Engineering Geology, 2013, 40(4): 29-35.] | |
[34] | 王立伟. 塔里木盆地降水氢氧稳定同位素景观图谱及其影响过程[D]. 兰州: 西北师范大学, 2022. |
[Wang Liwei. Stable hydrogen and oxygen isoscapes in precipitation and influencing processes across the Tarim Basin[D]. Lanzhou: Northwest Normal University, 2022.] | |
[35] | Wang Y Q, Zhang X Y, Draxler R R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data[J]. Environmental Modeling and Software, 2009, 24(8): 938-939. |
[36] | Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468. |
[37] | Li L, Garzione C N. Spatial distribution and controlling factors of stable isotopes in meteoric waters on the Tibetan Plateau: Implications for paleoelevation reconstruction[J]. Earth and Planetary Science Letters, 2017, 460: 302-314. |
[38] | Wu H W, Wu J L, Song F, et al. Spatial distribution and controlling factors of surface water stable isotope values (δ18O and δ2H) across Kazakhstan, Central Asia[J]. Science of the Total Environment, 2019, 678: 53-61. |
[39] | Kuang X X, Luo X, Jiao J J, et al. Using stable isotopes of surface water and groundwater to quantify moisture sources across the Yellow River source region[J]. Hydrological Processes, 2019, 33(13): 1835-1850. |
[40] | Xing M, Liu W G, Hu J, et al. A set of methods to evaluate the below-cloud evaporation effect on local precipitation isotopic composition: A case study for Xi’an, China[J]. Atmospheric Chemistry and Physics, 2023, 23(16): 9123-9136. |
[41] |
Sun C J, Li X G, Chen Y N, et al. Spatial and temporal characteristics of stable isotopes in the Tarim River Basin[J]. Isotopes in Environmental and Health Studies, 2016, 52(3): 281-297.
doi: 10.1080/10256016.2016.1125350 pmid: 26862902 |
[42] | Wang S J, Zhang M J, Hughes C E, et al. Meteoric water lines in arid Central Asia using event-based and monthly data[J]. Journal of Hydrology, 2018, 562: 435-445. |
[43] | Sun C J, Chen Y N, Li J, et al. Stable isotope variations in precipitation in the northwesternmost Tibetan Plateau related to various meteorological controlling factors[J]. Atmospheric Research, 2019, 227: 66-78. |
[44] | Rowley D B, Garzione C N. Stable isotope-based paleoaltimetry[J]. Annual Review of Earth and Planetary Sciences, 2007, 35: 463-508. |
[45] | Wang S J, Jiao R, Zhang M J, et al. Changes in below-cloud evaporation affect precipitation isotopes during five decades of warming across China[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(7): e2020JD033075, doi: 10.1029/2020JD033075. |
[46] | Yao J Q, Chen Y N, Zhao Y, et al. Climatic and associated atmospheric water cycle changes over the Xinjiang, China[J]. Journal of Hydrology, 2020, 585: 124823, doi: 10.1016/j.jhydrol.2020.124823. |
[47] | Zhu X F, Wu T H, Hu G J, et al. Long-distance atmospheric moisture dominates water budget in permafrost regions of the central Qinghai-Tibet Plateau[J]. Hydrological Processes, 2020, 34(22): 4280-4294. |
|