Arid Land Geography ›› 2024, Vol. 47 ›› Issue (6): 1084-1096.doi: 10.12118/j.issn.1000-6060.2023.344
• Regional Development • Previous Articles
XIA Wenhao1(), HUO Yu1(), LU Yuan2, WANG Chaoyi1
Received:
2023-07-05
Revised:
2023-11-20
Online:
2024-06-25
Published:
2024-07-09
Contact:
HUO Yu
E-mail:xiawenhao199883@163.com;huoyu050301@163.com
XIA Wenhao, HUO Yu, LU Yuan, WANG Chaoyi. Spatialtemporal differences and spatial spillover effects of agricultural carbon emissions in Xinjiang[J].Arid Land Geography, 2024, 47(6): 1084-1096.
Tab. 1
Descriptive statistics of the variables"
变量 | 符号 | 样本量 | 均值 | 标准差 | 最小值 | 最大值 |
---|---|---|---|---|---|---|
农业碳排放强度 | lnEI | 182 | 1.36 | 0.60 | 0.24 | 3.32 |
农业产业集聚 | lnALQ | 182 | 1.12 | 0.59 | 0.04 | 3.11 |
农业产业结构 | lnAIS | 182 | 0.94 | 0.03 | 0.84 | 0.98 |
农业发展水平 | lnAGDP | 182 | 3.41 | 2.81 | 0.40 | 16.32 |
种植结构 | lnPS | 182 | 0.42 | 0.19 | 0.03 | 0.79 |
农村居民人均纯收入 | lnRI | 182 | 0.92 | 0.52 | 0.08 | 2.28 |
水土流失治理面积 | lnSEC | 182 | 64.89 | 61.90 | 1.40 | 301.40 |
灾害发生面积 | lnDA | 182 | 96.43 | 129.70 | 2.18 | 606.90 |
Tab. 2
Total amount and type of agricultural carbon emissions in Xinjiang from 2007 to 2020"
年份 | 农资利用 | 水稻种植 | 秸秆燃烧 | 禽畜养殖 | 总量 /104 t | 强度 /104 t·元-1 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
排放量/104 t | 比重/% | 排放量/104 t | 比重/% | 排放量/104 t | 比重/% | 排放量/104 t | 比重/% | ||||||
2007 | 391.50 | 18.96 | 27.88 | 1.35 | 952.07 | 46.11 | 693.31 | 33.58 | 2064.76 | 1.92 | |||
2008 | 444.27 | 21.23 | 30.41 | 1.45 | 1067.06 | 50.99 | 550.98 | 26.33 | 2092.72 | 1.75 | |||
2009 | 471.66 | 20.93 | 34.00 | 1.51 | 1191.67 | 52.87 | 556.47 | 24.69 | 2253.80 | 1.71 | |||
2010 | 493.20 | 21.00 | 32.30 | 1.38 | 1272.55 | 54.19 | 550.08 | 23.43 | 2348.13 | 1.25 | |||
2011 | 531.78 | 21.12 | 34.62 | 1.38 | 1399.41 | 55.59 | 551.58 | 21.91 | 2517.40 | 1.27 | |||
2012 | 546.71 | 20.03 | 37.02 | 1.36 | 1540.76 | 56.45 | 604.82 | 22.16 | 2729.31 | 1.18 | |||
2013 | 581.86 | 20.09 | 38.85 | 1.34 | 1657.09 | 57.23 | 617.85 | 21.34 | 2895.65 | 1.13 | |||
2014 | 671.71 | 22.02 | 36.30 | 1.19 | 1700.00 | 55.73 | 642.59 | 21.06 | 3050.59 | 1.10 | |||
2015 | 687.56 | 21.64 | 32.01 | 1.01 | 1803.01 | 56.75 | 654.69 | 20.61 | 3177.27 | 1.12 | |||
2016 | 707.84 | 23.86 | 33.10 | 1.12 | 1578.06 | 53.19 | 648.06 | 21.84 | 2967.07 | 0.99 | |||
2017 | 690.01 | 23.27 | 29.41 | 0.99 | 1593.03 | 53.72 | 652.94 | 22.02 | 2965.39 | 0.96 | |||
2018 | 661.03 | 22.28 | 35.42 | 1.19 | 1656.88 | 55.85 | 613.38 | 20.68 | 2966.71 | 0.81 | |||
2019 | 639.68 | 21.01 | 26.10 | 0.86 | 1673.16 | 54.96 | 705.37 | 23.17 | 3044.30 | 0.78 | |||
2020 | 611.87 | 19.76 | 21.51 | 0.69 | 1730.67 | 55.90 | 731.98 | 23.64 | 3096.03 | 1.10 | |||
累计增速/% | 56.29 | -22.85 | 81.78 | 5.58 | 49.95 | -42.71 | |||||||
平均增速/% | 4.33 | -1.76 | 6.29 | 0.43 | 3.84 | -3.29 |
Tab. 3
Total amount and intensity of agricultural carbon emissions in 13 prefectures in Xinjiang"
地州市 | 2007年 | 2020年 | 总量 变动率/% | 强度 变动率/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
总量/104 t | 排名 | 强度/104 t·元-1 | 排名 | 总量/104 t | 排名 | 强度/104 t·元-1 | 排名 | ||||
乌鲁木齐市 | 26.57 | 11 | 1.40 | 9 | 27.78 | 12 | 0.66 | 12 | 4.55 | -53.86 | |
昌吉州 | 166.72 | 5 | 1.39 | 10 | 221.68 | 5 | 0.90 | 7 | 32.97 | -35.25 | |
吐鲁番市 | 17.25 | 13 | 0.65 | 13 | 23.04 | 13 | 0.24 | 13 | 33.57 | -63.08 | |
哈密市 | 20.64 | 12 | 1.30 | 11 | 37.17 | 11 | 0.69 | 11 | 80.10 | -46.92 | |
伊犁州直 | 562.40 | 1 | 2.90 | 2 | 455.80 | 1 | 1.39 | 2 | -18.95 | -52.07 | |
塔城地区 | 186.09 | 4 | 2.31 | 5 | 360.48 | 4 | 1.33 | 3 | 93.71 | -42.42 | |
阿勒泰地区 | 88.99 | 8 | 2.85 | 3 | 154.78 | 7 | 1.32 | 4 | 73.93 | -53.68 | |
博州 | 55.79 | 9 | 2.09 | 7 | 108.78 | 9 | 1.16 | 6 | 94.98 | -44.50 | |
巴州 | 117.76 | 7 | 1.29 | 12 | 189.96 | 6 | 0.71 | 10 | 61.31 | -44.96 | |
阿克苏地区 | 233.52 | 3 | 2.21 | 6 | 395.17 | 3 | 0.83 | 8 | 69.22 | -62.44 | |
克州 | 38.38 | 10 | 3.32 | 1 | 55.55 | 10 | 1.26 | 5 | 44.74 | -62.05 | |
喀什地区 | 333.38 | 2 | 1.93 | 8 | 438.87 | 2 | 0.76 | 9 | 31.64 | -60.62 | |
和田地区 | 133.99 | 6 | 2.59 | 4 | 113.35 | 8 | 1.46 | 1 | -15.40 | -43.63 |
Tab. 4
Agricultural carbon emission types in 13 prefectures in Xinjiang"
类型 | 地州市 | 农资利用 | 水稻种植 | 秸秆燃烧 | 禽畜养殖 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
数量/104 t | 比重/% | 数量/104 t | 比重/% | 数量/104 t | 比重/% | 数量/104 t | 比重/% | |||||
禽畜养殖主导型 | 乌鲁木齐市 | 7.91 | 28.48 | 3.84 | 13.83 | 2.61 | 9.40 | 13.41 | 48.29 | |||
阿勒泰地区 | 28.55 | 18.45 | 0.07 | 0.05 | 50.85 | 32.85 | 75.31 | 48.66 | ||||
克州 | 7.40 | 13.32 | 0.45 | 0.81 | 19.28 | 34.71 | 28.42 | 51.16 | ||||
秸秆燃烧主导型 | 昌吉州 | 60.68 | 27.37 | 0.12 | 0.05 | 117.11 | 52.83 | 43.78 | 19.75 | |||
塔城地区 | 74.29 | 20.61 | 0.06 | 0.02 | 228.74 | 63.45 | 57.39 | 15.92 | ||||
博州 | 25.54 | 23.48 | 0.06 | 0.06 | 63.65 | 58.51 | 19.54 | 17.96 | ||||
巴州 | 56.35 | 29.66 | 0.28 | 0.15 | 86.61 | 45.59 | 46.72 | 24.59 | ||||
阿克苏地区 | 111.03 | 28.10 | 6.62 | 1.68 | 201.93 | 51.10 | 75.60 | 19.13 | ||||
喀什地区 | 126.63 | 28.85 | 1.25 | 0.28 | 237.51 | 54.12 | 73.48 | 16.74 | ||||
秸秆燃烧-禽畜养殖主导型 | 和田地区 | 24.62 | 21.72 | 1.87 | 1.65 | 51.68 | 45.59 | 35.18 | 31.04 | |||
伊犁州直 | 68.85 | 15.11 | 6.89 | 1.51 | 216.62 | 47.53 | 163.44 | 35.86 | ||||
农资利用主导型 | 吐鲁番市 | 10.21 | 44.30 | 0.00 | 0.00 | 4.75 | 20.61 | 8.09 | 35.10 | |||
均衡型 | 哈密市 | 9.81 | 26.39 | 0.00 | 0.00 | 11.55 | 31.07 | 15.81 | 42.53 |
Tab. 5
Moran's I test results of agricultural carbon emission intensity in prefectures and cities, Xinjiang"
年份 | 地理距离空间权重矩阵 | 经济距离空间权重矩阵 | |||||
---|---|---|---|---|---|---|---|
Moran’s I | Z | P值 | Moran’s I | Z | P值 | ||
2007 | 0.105*** | 2.645 | 0.008 | 0.168** | 2.205 | 0.013 | |
2008 | 0.112*** | 2.783 | 0.005 | 0.100*** | 2.418 | 0.008 | |
2009 | 0.102*** | 2.700 | 0.007 | 0.177*** | 2.282 | 0.009 | |
2010 | 0.080** | 2.274 | 0.023 | 0.074*** | 2.339 | 0.007 | |
2011 | 0.077** | 2.200 | 0.028 | 0.039** | 2.058 | 0.021 | |
2012 | 0.092** | 2.427 | 0.015 | 0.073** | 2.267 | 0.012 | |
2013 | 0.057** | 1.996 | 0.046 | 0.091*** | 2.354 | 0.010 | |
2014 | 0.056** | 2.043 | 0.041 | 0.054*** | 2.542 | 0.005 | |
2015 | 0.072** | 2.290 | 0.022 | 0.087*** | 2.643 | 0.003 | |
2016 | 0.064** | 2.240 | 0.025 | 0.093*** | 2.675 | 0.003 | |
2017 | 0.050** | 2.148 | 0.032 | 0.062*** | 2.855 | 0.001 | |
2018 | 0.006 | 1.356 | 0.175 | 0.083*** | 2.253 | 0.008 | |
2019 | -0.012 | 1.083 | 0.279 | 0.003 | 1.458 | 0.135 | |
2020 | 0.015 | 1.547 | 0.122 | 0.011 | 1.265 | 0.176 |
Tab. 7
Two-fixed effect spatial Dubin model regression results (spatial weight matrix of geographic distance)"
变量 | 模型估计系数 | 空间矩阵估计系数 | 空间自相关估计系数 | 差异系数 | 直接效应 | 间接效应 | 总效应 |
---|---|---|---|---|---|---|---|
lnALQ | 0.163*** (2.74) | 1.005*** (5.26) | 0.220*** (3.58) | 1.531*** (4.42) | 1.751*** (4.85) | ||
lnAIS | 0.159 (0.25) | -4.845*** (-3.13) | -0.101 (-0.17) | -6.720*** (-2.95) | -6.821*** (-3.01) | ||
lnAGDP | -0.014** (-2.07) | 0.022** (1.98) | -0.012* (-1.90) | 0.026 (1.58) | 0.014 (0.81) | ||
lnPS | 0.459** (2.25) | -0.622 (-1.59) | 0.432** (2.27) | -0.671 (-1.25) | -0.238 (-0.44) | ||
lnRI | 0.097 (1.29) | -0.046 (-0.33) | 0.098 (1.40) | 0.010 (0.05) | 0.108 (0.58) | ||
lnSEC | -0.001** (-2.13) | -0.001 (-1.13) | -0.001** (-2.21) | -0.002 (-1.35) | -0.003* (-1.75) | ||
lnDA | 0.001** (2.21) | -0.006*** (-6.48) | 0.000 (1.02) | -0.009*** (-4.31) | -0.008*** (-3.76) | ||
ρ | 0.314** (2.54) | ||||||
sigma2_e | 0.018*** (9.14) | ||||||
R2 | 0.421 | ||||||
Log-L | 100.670 |
Tab. 8
Two-fixed effects spatial Dubin model regression results (economic distance spatial weight matrix)"
变量 | 模型估计系数 | 空间矩阵估计系数 | 空间自相关估计系数 | 差异系数 | 直接效应 | 间接效应 | 总效应 |
---|---|---|---|---|---|---|---|
lnALQ | 0.152** (2.46) | 0.360** (2.28) | 0.189*** (3.11) | 0.617*** (2.86) | 0.806*** (3.65) | ||
lnAIS | -0.274 (-0.43) | -3.276** (-2.50) | -0.576 (-0.98) | -4.922*** (-2.61) | -5.498*** (-2.89) | ||
lnAGDP | -0.016** (-2.31) | 0.008 (0.81) | -0.015** (-2.30) | 0.004 (0.25) | -0.012 (-0.77) | ||
lnPS | 0.413* (1.95) | -1.109*** (-3.13) | 0.325 (1.64) | -1.459*** (-2.93) | -1.134** (-2.16) | ||
lnRI | 0.045 (0.51) | -0.003 (-0.03) | 0.046 (0.57) | 0.041 (0.25) | 0.086 (0.63) | ||
lnSEC | -0.001*** (-3.95) | -0.002** (-2.16) | -0.002*** (-4.41) | -0.004** (-2.44) | -0.005*** (-3.18) | ||
lnDA | 0.001** (2.25) | -0.004*** (-5.79) | 0.000 (1.14) | -0.005*** (-4.21) | -0.005*** (-3.33) | ||
ρ | 0.362*** (3.85) | ||||||
sigma2_e | 0.018*** (9.10) | ||||||
R2 | 0.388 | ||||||
Log-L | 97.821 |
[1] | BP. BP Statistical review of world energy 2022[R/OL]. [2022-11-20]. https://www.bp.com/content/dam/bp/business-sites/en/glo-bal/corporate-/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf. |
[2] | 田云, 尹忞昊. 中国农业碳排放再测算: 基本现状、动态演进及空间溢出效应[J]. 中国农村经济, 2022(3): 104-127. |
[Tian Yun, Yin Minhao. Re-evaluation of China’s agricultural carbon emissions: Basic status, dynamic evolution and spatial spillover effects[J]. Chinese Rural Economy, 2022(3): 104-127.] | |
[3] | 田云, 尹忞昊. 产业集聚对中国农业净碳效应的影响研究[J]. 华中农业大学学报(社会科学版), 2021(3): 107-117, 188. |
[Tian Yun, Yin Minhao. Research on the impact of industrial agglomeration on China’s agricultural net carbon effect[J]. Journal of Huazhong Agricultural University (Social Sciences Edition), 2021(3): 107-117, 188.] | |
[4] | 夏文浩, 潘生亮, 霍瑜, 等. 新疆农业面源污染的时空分异及动态演进——基于特色畜牧视角的再分析[J]. 资源开发与市场, 2022, 38(10): 1190-1199. |
[Xia Wenhao, Pan Shengliang, Huo Yu, et al. Spatial-temporal differentiation and dynamic evolution of agricultural non-point source pollution in Xinjiang: Reanalysis based on the perspective of characteristic animal husbandry[J]. Resource Development & Market, 2022, 38(10): 1190-1199.] | |
[5] | 夏文浩, 王铭扬, 姜磊. 新疆农业碳排放强度时空变化趋势与收敛分析[J]. 干旱区地理, 2023, 46(7): 1145-1154. |
[Xia Wenhao, Wang Mingyang, Jiang Lei. Spatiotemporal variation trends and convergence analysis of agricultural carbon emission intensity in Xinjiang[J]. Arid Land Geography, 2023, 46(7): 1145-1154.] | |
[6] | 李波, 张俊飚, 李海鹏. 中国农业碳排放时空特征及影响因素分解[J]. 中国人口·资源与环境, 2011, 21(8): 80-86. |
[Li Bo, Zhang Junbiao, Li Haipeng. Research on spatial-temporal characteristics and affecting factors decomposition of agricultural carbon emission in China[J]. China Population, Resources and Environment, 2011, 21(8): 80-86.] | |
[7] | 苏洋, 马惠兰, 李凤. 新疆农牧业碳排放及其与农业经济增长的脱钩关系研究[J]. 干旱区地理, 2014, 37(5): 1047-1054. |
[Su Yang, Ma Huilan, Li Feng. Xinjiang agriculture and animal husbandry carbon emissions and its decoupling relationship with agricultural economic growth[J]. Arid Land Geography, 2014, 37(5): 1047-1054.] | |
[8] |
李寒冰, 金晓斌, 杨绪红, 等. 不同农田管理措施对土壤碳排放强度影响的Meta分析[J]. 资源科学, 2019, 41(9): 1630-1640.
doi: 10.18402/resci.2019.09.05 |
[Li Hanbing, Jin Xiaobin, Yang Xuhong, et al. Meta-analysis of the effects of different farmland management measures on soil carbon intensity[J]. Resources Science, 2019, 41(9): 1630-1640.]
doi: 10.18402/resci.2019.09.05 |
|
[9] |
易丹, 欧名豪, 郭杰, 等. 土地利用碳排放及低碳优化研究进展与趋势展望[J]. 资源科学, 2022, 44(8): 1545-1559.
doi: 10.18402/resci.2022.08.02 |
[Yi Dan, Ou Minghao, Guo Jie, et al. Progress and prospect of research on land use carbon emissions and low-carbon optimization[J]. Resources Science, 2022, 44(8): 1545-1559.]
doi: 10.18402/resci.2022.08.02 |
|
[10] | Xia W H, Ma Y G, Gao Y J, et al. Spatial-temporal pattern and spatial convergence of carbon emission intensity of rural energy consumption in China[J]. Environmental Science and Pollution Research, 2024, 31(5): 7751-7774. |
[11] |
田成诗, 陈雨. 中国省际农业碳排放测算及低碳化水平评价——基于衍生指标与TOPSIS法的运用[J]. 自然资源学报, 2021, 36(2): 395-410.
doi: 10.31497/zrzyxb.20210210 |
[Tian Chengshi, Chen Yu. China’s provincial agricultural carbon emissions measurement and low carbonization level evaluation: Based on the application of derivative indicators and TOPSIS[J]. Journal of Natural Resources, 2021, 36(2): 395-410.]
doi: 10.31497/zrzyxb.20210210 |
|
[12] | 胡永浩, 张昆扬, 胡南燕, 等. 中国农业碳排放测算研究综述[J]. 中国生态农业学报(中英文), 2023, 31(2): 163-176. |
[Hu Yonghao, Zhang Kunyang, Hu Nanyan, et al. Review on measurement of agricultural carbon emission in China[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 163-176.] | |
[13] | 王宝义. 中国农业碳排放的结构特征及时空差异研究[J]. 调研世界, 2016(9): 3-10. |
[Wang Baoyi. Research on the structural characteristics and spatiotemporal variations of agricultural carbon emissions in China[J]. The World of Survey and Research, 2016(9): 3-10.] | |
[14] | 伍国勇, 刘金丹, 杨丽莎. 中国农业碳排放强度动态演进及碳补偿潜力[J]. 中国人口·资源与环境, 2021, 31(10): 69-78. |
[Wu Guoyong, Liu Jindan, Yang Lisha. Dynamic evolution of China’s agricultural carbon emission intensity and carbon offset potential[J]. China population, Resources and Environment, 2021, 31(10): 69-78.] | |
[15] | 胡剑波, 王青松. 基于泰尔指数的中国农业能源消费碳排放区域差异研究[J]. 贵州社会科学, 2019(7): 108-117. |
[Hu Jianbo, Wang Qingsong. Study on the regional differences of carbon emissions from agricultural energy consumption in China based on Theil index[J]. Guizhou Social Sciences, 2019(7): 108-117.] | |
[16] | 夏四友, 赵媛, 许昕, 等. 近20年来中国农业碳排放强度区域差异、时空格局及动态演化[J]. 长江流域资源与环境, 2020, 29(3): 596-608. |
[Xia Siyou, Zhao Yuan, Xu Xin, et al. Regional inequality, spatial-temporal pattern and dynamic evolution of carbon emission intensity from agriculture in China in the period of 1997—2016[J]. Resources and Environment in the Yangtze Basin, 2020, 29(3): 596-608.] | |
[17] | 庞丽. 我国农业碳排放的区域差异与影响因素分析[J]. 干旱区资源与环境, 2014, 28(12): 1-7. |
[Pang Li. Empirical study of regional carbon emissions of agriculture in China[J]. Journal of Arid Land Resources and Environment, 2014, 28(12): 1-7.] | |
[18] | 颜光耀, 陈卫洪, 钱海慧. 农业技术效率对农业碳排放的影响——基于空间溢出效应与门槛效应分析[J]. 中国生态农业学报, 2023, 31(2): 226-240. |
[Yan Guangyao, Chen Weihong, Qian Haihui. Effects of agricultural technical efficiency on agricultural carbon emission: Based on spatial spillover effect and threshold effect analysis[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 226-240.] | |
[19] |
何艳秋, 王鸿春, 刘云强. 产业集聚视角下农业碳排放的空间效应[J]. 资源科学, 2022, 44(12): 2428-2439.
doi: 10.18402/resci.2022.12.04 |
[He Yanqiu, Wang Hongchun, Liu Yunqiang. Spatial effects of agricultural carbon emissions from the perspective of industrial agglomeration[J]. Resources Science, 2022, 44(12): 2428-2439.]
doi: 10.18402/resci.2022.12.04 |
|
[20] |
吉雪强, 李卓群, 张跃松. 农地流转对农业碳排放的影响及空间特性[J]. 资源科学, 2023, 45(1): 77-90.
doi: 10.18402/resci.2023.01.06 |
[Ji Xueqiang, Li Zhuoqun, Zhang Yuesong. Influence of rural land transfer on agricultural carbon emissions and its spatial characteristics[J]. Resources Science, 2023, 45(1): 77-90.]
doi: 10.18402/resci.2023.01.06 |
|
[21] | 郑阳阳, 罗建利. 农业生产效率的碳排放效应: 空间溢出与门槛特征[J]. 北京航空航天大学学报(社会科学版), 2021, 34(1): 96-105. |
[Zheng Yangyang, Luo Jianli. Effect of agricultural production efficiency on carbon emissions: Spatial spillovers and threshold characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics (Social Sciences Edition), 2021, 34(1): 96-105.] | |
[22] | 秦雨新, 李树超. 农业经济增长与农业碳排放强度空间溢出效应实证研究[J]. 湖北农业科学, 2023, 62(4): 232-238. |
[Qin Yuxin, Li Shuchao. An empirical study on the spatial spillover effects of agricultural economic growth and agricultural carbon emission intensity[J]. Hubei Agricultural Sciences, 2023, 62(4): 232-238.] | |
[23] | 段华平, 张悦, 赵建波, 等. 中国农田生态系统的碳足迹分析[J]. 水土保持学报, 2011, 25(5): 203-208. |
[Duan Huaping, Zhang Yue, Zhao Jianbo, et al. Carbon footprint analysis of farmland ecosystem in China[J]. Journal of Soil and Water Conservation, 2011, 25(5): 203-208.] | |
[24] | 刘华军, 鲍振, 杨骞. 中国农业碳排放的地区差距及其分布动态演进——基于Dagum基尼系数分解与非参数估计方法的实证研究[J]. 农业技术经济, 2013(3): 72-81. |
[Liu Huajun, Bao Zhen, Yang Qian. The regional gap of China’s agricultural carbon emissions and its distribution dynamic evolution: An empirical study based on Dagum Gini coefficient decomposition and nonparametric estimation method[J]. Journal of Agrotechnical Economics, 2013(3): 72-81.] | |
[25] | Dagum C. A new approach to the decomposition of the Gini income inequality ratio[J]. Empirical Economics, 1997, 22(4): 515-531. |
[26] |
谢亚燕, 苏洋, 李凤, 等. 技术进步对新疆农业碳排放的门槛效应检验[J]. 浙江农业科学, 2022, 63(1): 158-165, 169.
doi: 10.16178/j.issn.0528-9017.20212365 |
[Xie Yayan, Su Yang, Li Feng, et al. The threshold effect test of technological progress on agricultural carbon emissions in Xinjiang[J]. Journal of Zhejiang Agricultural Sciences, 2022, 63(1): 158-165, 169.] | |
[27] | 高鸣, 魏佳朔. 收入性补贴与粮食全要素生产率增长[J]. 经济研究, 2022, 57(12): 143-161. |
[Gao Ming, Wei Jiashuo. Income subsidy and growth of total factor productivity of grain[J]. Economic Research Journal, 2022, 57(12): 143-161.] | |
[28] | 杜志雄, 胡凌啸. 党的十八大以来中国农业高质量发展的成就与解释[J]. 中国农村经济, 2023(1): 2-17. |
[Du Zhixiong, Hu Lingxiao. The achievements and interpretations of the high-quality agricultural development in China since the 18th National Congress of the Communist Party of China[J]. Chinese Rural Economy, 2023(1): 2-17.] | |
[29] | 李倩娜, 姚娟, 唐洪松, 等. 新疆棉花低碳生产率、区域差异与动态演进[J]. 干旱区资源与环境, 2022, 36(7): 1-8. |
[Li Qianna, Yao Juan, Tang Hongsong, et al. Low carbon productivity, regional differences and dynamic evolution of cotton in Xinjiang[J]. Journal of Arid Land Resources and Environment, 2022, 36(7): 1-8.] | |
[30] | 肖春梅, 朱萍萍. 新疆绿色发展水平综合评价与对策研究[J]. 石河子大学学报(哲学社会科学版), 2018, 32(3): 41-49. |
[Xiao Chunmei, Zhu Pingping. The comprehensive evaluation and countermeasure study of green development level in Xinjiang[J]. Journal of Shihezi University (Philosophy and Social Sciences Edition), 2018, 32(3): 41-49.] | |
[31] | 胡剑波, 王楷文. 中国省域碳排放效率时空差异及空间收敛性研究[J]. 管理学刊, 2022, 35(4): 36-52. |
[Hu Jianbo, Wang Kaiwen. Study on temporal and spatial differences and spatial convergence of provincial carbon emission efficiency in China[J]. Journal of Management, 2022, 35(4): 36-52.] | |
[32] | 郭军, 张效榕, 孔祥智. 农村一二三产业融合与农民增收——基于河南省农村一二三产业融合案例[J]. 农业经济问题, 2019(3): 135-144. |
[Guo Jun, Zhang Xiaorong, Kong Xiangzhi. The convergence of primary, secondary and tertiary industries and farmers’ income generation: One case study of convergence of primary, secondary and tertiary industries in rural areas of Henan Province[J]. Issues in Agricultural Economy, 2019(3): 135-144.] | |
[33] | 王学婷, 张俊飚. 双碳战略目标下农业绿色低碳发展的基本路径与制度构建[J]. 中国生态农业学报, 2022, 30(4): 516-526. |
[Wang Xueting, Zhang Junbiao. Basic path and system construction of agricultural green and low-carbon development with respect to the strategic target of carbon peak and carbon neutrality[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 516-526.] | |
[34] | 王恒, 易小燕. 生态振兴视角下绿色施肥行为研究进展[J]. 生态经济, 2019, 35(6): 106-112. |
[Wang Heng, Yi Xiaoyan. Research progress of green fertilization behaviors from the perspective of ecological revitalization[J]. Ecological Economy, 2019, 35(6): 106-112.] | |
[35] |
韩晔, 周忠学. 西安市农业生态系统服务间关系及空间分异[J]. 冰川冻土, 2016, 38(5): 1447-1458.
doi: 10.7522/j.issn.1000-0240.2016.0170 |
[Han Ye, Zhou Zhongxue. Relationship among agro-ecosystem services and their spatial differentiation in the area of Xi’an City[J]. Journal of Glaciology and Geocryology, 2016, 38(5): 1447-1458.] | |
[36] | 徐曼, 余泺, 王富华, 等. 紫色土旱坡地不同坡位土壤有机碳组分含量对施肥管理的响应[J]. 环境科学, 2021, 42(11): 5491-5499. |
[Xu Man, Yu Luo, Wang Fuhua, et al. Response of soil organic carbon content in different slope positions to fertilization management in purple soil sloping fields[J]. Environmental Science, 2021, 42(11): 5491-5499.] | |
[37] | 彭文龙, 吕晓, 辛宗斐, 等. 国际可持续集约化发展经验及其对中国耕地保护的启示[J]. 中国土地科学, 2020, 34(4): 18-25. |
[Peng Wenlong, Lü Xiao, Xin Zongfei, et al. International experience of sustainable intensification and its implications for the protection of cultivated land in China[J]. China Land Science, 2020, 34(4): 18-25.] | |
[38] | 刘浩, 刘璨. 生态系统恢复可持续土地管理措施的成本效益分析——基于中国西部干旱地区数据[J]. 林业经济, 2015, 37(11): 94-105. |
[Liu Hao, Liu Can. Cost-benefit analysis of sustainable land management measures to restore dryland ecosystem: Based on the data from dryland in western China[J]. Forestry Economics, 2015, 37(11): 94-105.] | |
[39] | 冉锦成, 苏洋, 胡金凤, 等. 新疆农业碳排放时空特征、峰值预测及影响因素研究[J]. 中国农业资源与区划, 2017, 38(8): 16-24. |
[Ran Jincheng, Su Yang, Hu Jinfeng, et al. Temporal and spatial characteristics, peak value forecast and influencing factors of agricultural carbon emissions in Xinjiang[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2017, 38(8): 16-24.] | |
[40] | 杨思存, 霍琳, 王成宝, 等. 基于STIRPAT模型的甘肃省农业碳排放特征分析[J]. 干旱区地理, 2023, 46(9): 1493-1502. |
[Yang Sicun, Huo Lin, Wang Chengbao, et al. Characteristics of agricultural carbon emissions in Gansu Province based on STIRPAT model[J]. Arid Land Geography, 2023, 46(9): 1493-1502.] | |
[41] | 许山晶. 我国农村秸秆资源利用的综合效应评价[D]. 北京: 中国社会科学院研究生院, 2020. |
[Xu Shanjing. The effect evaluation of comprehensive utilization of straw resources in China[D]. Beijing: Graduate School of Chinese Academy of Social Sciences, 2020.] | |
[42] | 樊高源, 杨俊孝, 胡娟. 新疆农业生产碳排放变化特征及其净碳排放压力研究[J]. 浙江农业学报, 2016, 28(2): 352-360. |
[Fan Gaoyuan, Yang Junxiao, Hu Juan. Studies of agricultural production carbon emissions’ variation characteristics and net carbon emissions pressure in Xinjiang[J]. Acta Agriculturae Zhejiangensis, 2016, 28(2): 352-360.] |
|