Arid Land Geography ›› 2024, Vol. 47 ›› Issue (5): 820-829.doi: 10.12118/j.issn.1000-6060.2023.496
• Climatology and Hydrology • Previous Articles Next Articles
LU Quan1,2(), GAO Huayan2, WANG Pengpeng2, FENG Xiaolin3, YANG Yanxia2()
Received:
2023-09-11
Revised:
2023-11-21
Online:
2024-05-25
Published:
2024-05-30
Contact:
YANG Yanxia
E-mail:luquan0122@163.com;17809971661@163.com
LU Quan, GAO Huayan, WANG Pengpeng, FENG Xiaolin, YANG Yanxia. Coupling relationship and influencing factors of water-cropland-grain-cotton system in Tarim River Basin[J].Arid Land Geography, 2024, 47(5): 820-829.
Tab. 1
Index system and weights of water-cropland-grain-cotton system in the Tarim River Basin"
系统 名称 | 指标名称 | 指标 性质 | 信息 熵值 | 权重系数/% |
---|---|---|---|---|
水 | 水资源总量/108 m3 | 正 | 0.9425 | 9.48 |
供水总量/108 m3 | 正 | 0.9358 | 10.58 | |
第一产业用水量/108 m3 | 负 | 0.9461 | 8.89 | |
第二产业用水量/108 m3 | 负 | 0.9873 | 2.09 | |
居民生活用水量/108 m3 | 负 | 0.9923 | 1.27 | |
人均用水量/m3·人-1 | 负 | 0.9672 | 5.42 | |
产水模数/104 m3·km-2 | 正 | 0.9413 | 9.68 | |
亿元GDP用水量/108 m3·(108元)-1 | 负 | 0.9845 | 2.56 | |
耕地 | 农作物播种面积/hm2 | 正 | 0.9226 | 12.78 |
农业机械总动力/kW | 正 | 0.9242 | 12.51 | |
化肥使用量/t | 负 | 0.9722 | 4.59 | |
粮棉 | 粮棉总产量/t | 正 | 0.9244 | 12.47 |
粮棉单位面积产量/t·hm-2 | 正 | 0.9676 | 5.35 | |
粮棉播种面积比重/% | 正 | 0.9859 | 2.33 |
Tab. 2
Mean values of coupled coordination of water-cropland-grain-cotton systems in the Tarim River Basin from 2005 to 2020"
年份 | 耦合协调程度 | 耦合协调度 | 年份 | 耦合协调程度 | 耦合协调度 |
---|---|---|---|---|---|
2005 | 濒临失调 | 0.475 | 2013 | 初级协调 | 0.606 |
2006 | 勉强协调 | 0.515 | 2014 | 勉强协调 | 0.581 |
2007 | 濒临失调 | 0.492 | 2015 | 初级协调 | 0.673 |
2008 | 勉强协调 | 0.518 | 2016 | 初级协调 | 0.669 |
2009 | 勉强协调 | 0.574 | 2017 | 初级协调 | 0.680 |
2010 | 勉强协调 | 0.511 | 2018 | 勉强协调 | 0.599 |
2011 | 初级协调 | 0.615 | 2019 | 勉强协调 | 0.583 |
2012 | 初级协调 | 0.600 | 2020 | 初级协调 | 0.601 |
Tab. 3
Global Moran’s I index of coupling coordination in the Tarim River Basin from 2005 to 2020"
年份 | 全局莫兰指数 | 标准偏差 | P值 | 年份 | 全局莫兰指数 | 标准偏差 | P值 |
---|---|---|---|---|---|---|---|
2005 | -0.437 | 0.216 | 0.194 | 2013 | -0.2523 | 0.170 | 0.494 |
2006 | -0.333 | 0.228 | 0.357 | 2014 | -0.263 | 0.150 | 0.464 |
2007 | -0.253 | 0.226 | 0.495 | 2015 | -0.500 | 0.202 | 0.108 |
2008 | -0.395 | 0.220 | 0.255 | 2016 | -0.412 | 0.166 | 0.164 |
2009 | -0.414 | 0.196 | 0.202 | 2017 | -0.377 | 0.172 | 0.231 |
2010 | -0.340 | 0.175 | 0.303 | 2018 | -0.305 | 0.197 | 0.390 |
2011 | -0.366 | 0.218 | 0.298 | 2019 | -0.364 | 0.152 | 0.226 |
2012 | -0.390 | 0.210 | 0.253 | 2020 | -0.396 | 0.159 | 0.180 |
Tab. 4
Fractional Logit model parameter estimation results"
变量 | 回归系数 | 标准误 | Z值 | P值 | 置信区间 | |
---|---|---|---|---|---|---|
X1 | 0.010 | 0.005 | 2.20 | 0.028 | 0.001 | 0.019 |
X2 | -0.036 | 0.059 | -0.61 | 0.542 | -0.150 | 0.079 |
lnX3 | 0.210 | 0.064 | 3.30 | 0.001 | 0.085 | 0.335 |
lnX4 | 0.356 | 0.102 | 3.50 | 0.000 | 0.156 | 0.555 |
lnX5 | -0.047 | 0.057 | -0.82 | 0.412 | -0.160 | 0.065 |
常数 | -2.075 | 1.034 | -2.01 | 0.045 | -4.102 | -0.049 |
Tab. 5
Parameter estimation results of OLS and Tobit models"
变量 | OLS模型 | Tobit模型 | |||||
---|---|---|---|---|---|---|---|
回归系数 | 标准误 | P值 | 回归系数 | 标准误 | P值 | ||
X1 | 0.002** | 0.001 | 0.043 | 0.002** | 0.001 | 0.023 | |
X2 | -0.007 | 0.013 | 0.584 | -0.007 | 0.011 | 0.514 | |
lnX3 | 0.048*** | 0.015 | 0.002 | 0.048*** | 0.014 | 0.001 | |
lnX4 | 0.088*** | 0.025 | 0.000 | 0.088*** | 0.025 | 0.001 | |
lnX5 | -0.011 | 0.015 | 0.441 | -0.011 | 0.015 | 0.451 | |
常数 | -0.013 | 0.239 | 0.958 | -0.013 | 0.214 | 0.953 |
[1] | Mingaleva Z, Shaidurova N, Prajová V. The role of technoparks in technological upgrading of the economy: The example of agricultural production[J]. Management Systems in Production Engineering, 2018, 26(4): 241-245. |
[2] | 王婷, 王芝潇, 毛德华. 中国主要粮食作物虚拟水-虚拟耕地资源时空匹配格局[J]. 世界农业, 2019(10): 71-79, 110. |
[Wang Ting, Wang Zhixiao, Mao Dehua. Spatial and temporal match pattern of virtual water versus virtual cultivated land of main grain crops in China[J]. World Agriculture, 2019(10): 71-79, 110. ] | |
[3] | 王婷, 毛德华. 中国主要粮食作物虚拟水-虚拟耕地复合系统利用评价及耦合协调分析[J]. 水资源与水工程学报, 2020, 31(4): 40-49, 56. |
[Wang Ting, Mao Dehua. Evaluation and coupling coordination analysis of virtual water-virtual cultivated land system of main grain crops in China[J]. Journal of Water Resources & Water Engineering, 2020, 31(4): 40-49, 56. ] | |
[4] | 邓军, 马泉来, 卫华鹏, 等. 粮食安全视角下河南省淮河流域耕地资源时空演变[J]. 水土保持研究, 2021, 28(4): 390-396. |
[Deng Jun, Ma Quanlai, Wei Huapeng, et al. Spatial-temporal evolution of cultivated land resources in Huai River Basin of Henan Province from the perspective of food security[J]. Research of Soil and Water Conservation, 2021, 28(4): 390-396. ] | |
[5] | 张小允, 鲍洁, 许世卫. 基于熵权TOPSIS模型的中国粮食安全评价研究[J]. 中国农业资源与区划, 2023, 44(4): 35-44. |
[Zhang Xiaoyun, Bao Jie, Xu Shiwei. Research on the evaluation of China’s food security based on entropy weight TOPSIS model[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2023, 44(4): 35-44. ] | |
[6] | Zhang C, Chen X X, LI Y, et al. Water-energy-food nexus: Concepts, questions and methodologies[J]. Journal of Cleaner Production, 2018, 195(10): 625-639. |
[7] | White D J, Hubacke K, Feng K S, et al. The water-energy-food nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis[J]. Applied Energy, 2018, 210: 550-567. |
[8] | Simpson G B, Jewitt G P W. The development of the water-energy-food nexus as a framework for achieving resource security: A review[J]. Frontiers in Environmental Science, 2019, 7: 00008, doi: 10.3389/fenvs.2019.00008. |
[9] | Niva V L, Cai J L, Taka M J, et al. China’s sustainable water-energy-food nexus by 2030: Impacts of urbanization on sectoral water demand[J]. Journal of Cleaner Production, 2019, 25l(1): e119755, doi: 10.1016/j.jclepro.2019.119755. |
[10] | 向雁. 东北地区水-耕地-粮食关联研究[D]. 北京: 中国农业科学院, 2020. |
[Xiang Yan. Study on water-land-food (WLF) nexus in northeast China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. ] | |
[11] | 李成宇, 张士强. 中国省际水-能源-粮食耦合协调度及影响因素研究[J]. 中国人口·资源与环境, 2020, 30(1): 120-128. |
[Li Chengyu, Zhang Shiqiang. Coupling coordination degree of water-energy-grain and its influencing factors in China[J]. China Population, Resources and Environment, 2020, 30(1): 120-128. ] | |
[12] | 汪中华, 田宇薇. 我国水-能源-粮食耦合关系及影响因素[J]. 南水北调与水利科技, 2022, 20(2): 243-252. |
[Wang Zhonghua, Tian Yuwei. Coupling relationship between water, energy and grain and its influencing factors in China[J]. South-to-North Water Transfers and Water Science & Technology, 2022, 20(2): 243-252. ] | |
[13] | Lu Q, Yang Y, Li B, et al. Coupling relationship and influencing factors of the water-energy-cotton system in Tarim River Basin[J]. Agronomy, 2022, 12(10): 2333, doi: 10.3390/agronomy12102333. |
[14] | Guo H W, Xu H L, Ling H B. Study of ecological water transfer mode and ecological compensation scheme of the Tarim River Basin in dry years[J]. Journal of Natural Resources, 2017, 32(10): 1705-1717. |
[15] | Zhao S J. Evaluation of ecological environmental carrying capacity of the Tarim River Basin[J]. Water Conservancy Science and Technology and Economy, 2018, 24(1): 1-7. |
[16] |
Zuo Q T, Wu B B, Zhang W, et al. A method of water distribution in transboundary rivers and the new calculation scheme of the Yellow River water distribution[J]. Resources Science, 2020, 42(1): 37-45.
doi: 10.18402/resci.2020.01.04 |
[17] | 李玉芳, 刘海隆, 刘洪光. 塔里木河流域水资源脆弱性评价[J]. 中国农村水利水电, 2014(4): 90-93. |
[Li Yufang, Liu Hailong, Liu Hongguang. Water resources fragility assessment of the Tarim River valley[J]. China Rural Water and Hydropower, 2014(4): 90-93. ] | |
[18] | 王光焰, 王远见, 桂东伟. 塔里木河流域水资源研究进展[J]. 干旱区地理, 2018, 41(6): 1151-1159. |
[Wang Guangyan, Wang Yuanjian, Gui Dongwei. Research progress of water resources in Tarim River Basin[J]. Arid Land Geography, 2018, 41(6): 1151-1159. ] | |
[19] | Huang D C, Ren Y P, Zhang C Z. Effect of utilization efficiency of water resources on human-water harmony under intensity-total control[J]. Journal of Economics of Water Resources, 2019, 37(2): 1-7. |
[20] | 陈亚宁, 郝兴明, 陈亚鹏, 等. 新疆塔里木河流域水系连通与生态保护对策研究[J]. 中国科学院院刊, 2019, 34(10): 1156-1164. |
[Chen Yaning, Hao Xingming, Chen Yapeng, et al. Study on water system connectivity and ecological protection countermeasures of Tarim River Basin in Xinjiang[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(10): 1156-1164. ] | |
[21] | 陈磊, 梁新平. 基于改进综合赋权法的塔里木河流域“三源一干”水资源承载力评价[J]. 节水灌溉, 2019(1): 72-75, 83. |
[Chen Lei, Liang Xinping. Evaluation of water resources carrying capacity of “three sources and one trunk” in Tarim River Basin based on improved comprehensive weighting method[J]. Water Saving Irrigation, 2019(1): 72-75, 83. ] | |
[22] | 艾克热木·阿布拉, 王月健, 凌红波, 等. 塔里木河流域水资源变化趋势及用水效率分析[J]. 石河子大学学报(自然科学版), 2019, 37(1): 112-120. |
[Abula Aikeremu, Wang Yuejian, Ling Hongbo, et al. Water resources change trend and water use efficiency analysis in Tarim River Basin[J]. Journal of Shihezi University (Natural Science Edition), 2019, 37(1): 112-120. ] | |
[23] | Kelimu, Jiang F R. Present situation of water resources endowment, development and utilization and long-term strategic countermeasures in Xinjiang[J]. Water Resources and Hydropower Engineering, 2019, 50(12): 57-64. |
[24] | Zuo Q T, Zhang Z Z, Wu B B. Evaluation of water resources carrying capacity of nine provinces in Yellow River Basin based on combined weight TOPSIS model[J]. Water Resources Protection, 2020, 36(2): l-7. |
[25] | 李星, 左其亭, 韩淑颖, 等. 塔里木河流域水资源适应性利用能力评价及调控[J]. 水资源保护, 2021, 37(2): 63-68. |
[Li Xing, Zuo Qiting, Han Shuying, et al. Evaluation and regulation of water resources adaptive utilization capacity in Tarim River Basin[J]. Water Resources Protection, 2021, 37(2): 63-68. ] | |
[26] | 魏光辉. 新疆塔里木河流域水资源与生态安全的几点思考[J]. 中国水利, 2021(5): 28-30. |
[Wei Guanghui. Considerations on water resources and ecological security in the Tarim River Basin of Xinjiang[J]. China Water Resources, 2021(5): 28-30. ] | |
[27] | 刘夏, 张曼, 徐建华, 等. 基于系统动力学模型的塔里木河流域水资源承载力研究[J]. 干旱区地理, 2021, 44(5): 1407-1416. |
[Liu Xia, Zhang Man, Xu Jianhua, et al. Study on water resources carrying capacity of Tarim River Basin based on system dynamics model[J]. Arid Land Geography, 2021, 44(5): 1407-1416. ] | |
[28] | 李原园, 李云玲, 何君. 新发展阶段中国水资源安全保障战略对策[J]. 水利学报, 2021, 52(11): 1340-1346, 1354. |
[Li Yuanyuan, Li Yunling, He Jun. Strategic countermeasures of China’s water resources security in the new development stage[J]. Journal of Hydraulic Engineering, 2021, 52(11): 1340-1346, 1354. ] | |
[29] | 刘雨曈. 塔里木河流域水土流失动态变化分析[J]. 水生态学杂志, 2022, 43(3): 105-112. |
[Liu Yutong. Soil alteration and water loss in the Tarim River Basin[J]. Journal of Hydroecology, 2022, 43(3): 105-112. ] | |
[30] | Lu Q, Liu F J, Li Y J, et al. Study on the relationship between water resources utilization and economic growth in Tarim River Basin from the perspective of water footprint[J]. Water, 2022, 14(10): 1655, doi: 10.3390/W14101655. |
[31] | 孙克, 张信为, 聂坚, 等. 中国省域水资源利用绩效评价及空间分异和驱动因素分析[J]. 水资源保护, 2023, 39(4): 102-110, 186. |
[Sun Ke, Zhang Xinwei, Nie Jian, et al. Evaluation of provincial water resources utilization performance in China and its spatial differentiation and driving factor analysis[J]. Water Resources Protection, 2023, 39(4): 102-110, 186. ] | |
[32] | 粟晓玲, 刘雨翰, 姜田亮, 等. 西北地区陆地生态系统未来生态需水量预估[J]. 水资源保护, 2023, 39(4): 9-18, 78. |
[Su Xiaoling, Liu Yuhan, Jiang Tianliang, et al. Prediction of future ecological water demand of terrestrial ecosystem in northwest China[J]. Water Resources Protection, 2023, 39(4): 9-18, 78. ] | |
[33] | 祁泓锟, 焦菊英, 严晰芹, 等. 近40年塔里木河流域水沙演变及其空间分异特征[J]. 水土保持研究, 2022, 29(5): 117-123. |
[Qi Hongkun, Jiao Juying, Yan Xiqin, et al. Runoff and sediment evolution and its spatial differentiation in the Tarim River Basin in recent 40 years[J]. Research of Soil and Water Conservation, 2022, 29(5): 117-123. ] | |
[34] | 吴青松, 马军霞, 左其亭, 等. 塔里木河流域水资源-经济社会-生态环境耦合系统和谐程度量化分析[J]. 水资源保护, 2021, 37(2): 55-62. |
[Wu Qingsong, Ma Junxia, Zuo Qiting, et al. Quantitative analysis on harmony degree of water resources-economic society-ecological environment coupling system in the Tarim River Basin[J]. Water Resources Protection, 2021, 37(2): 55-62. ] | |
[35] | 周瑞涛, 郑航, 刘悦忆. 塔里木河流域的绿洲迁移研究[J]. 水利水电技术, 2021, 52(2): 155-164. |
[Zhou Ruitao, Zheng Hang, Liu Yueyi. Understading the evolution of the Tarim River oasis[J]. Water Resources and Hydropower Engineering, 2021, 52(2): 155-164. ] | |
[36] | Li B, Wang R, Lu Q. Land tenure and cotton farmers’ land improvement: Evidence from state-owned farms in Xinjiang, China[J]. International Journal of Environmental Research and Public Health, 2022, 19: 117, doi: 10.3390/ijerph19010117. |
[37] | 王希义, 徐海量, 潘存德. 塔里木河流域耕地面积动态变化特征及驱动因子[J]. 水土保持通报, 2017, 37(2): 327-332. |
[Wang Xiyi, Xu Hailiang, Pan Cunde. Change features of cultivated land resources and its driving factors in Tarim River Basin[J]. Bulletin of Soil and Water Conservation, 2017, 37(2): 327-332. ] | |
[38] | 焦伟, 刘新平, 张琳, 等. 塔里木河流域土地开发的生态响应研究[J]. 干旱区地理, 2018, 41(6): 1396-1404. |
[Jiao Wei, Liu Xinping, Zhang Lin, et al. Ecological response to the land development in Tarim River Basin[J]. Arid Land Geography, 2018, 41(6): 1396-1404. ] | |
[39] | 高玥, 刘新平. 干旱区内陆河流域土地利用结构时空变化分析——以塔里木河流域为例[J]. 湖北农业科学, 2019, 58(7): 62-66. |
[Gao Yue, Liu Xinping. Spatial and temporal variation of land use structure in inland river basin of arid area: Take the Tarim River Basin as an example[J]. Hubei Agricultural Sciences, 2019, 58(7): 62-66. ] | |
[40] | 丛晓男. 耦合度模型的形式、性质及在地理学中的若干误用[J]. 经济地理, 2019, 39(4): 18-25. |
[Cong Xiaonan. Expression and mathematical property of coupling model, and its misuse in geographical science[J]. Economic Geography, 2019, 39(4): 18-25. ] | |
[41] | 苏振东, 洪玉娟, 刘璐瑶. 政府生产性补贴是否促进了中国企业出口?——基于制造业企业面板数据的微观计量分析[J]. 管理世界, 2012(5): 24-42. |
[Su Zhendong, Hong Yujuan, Liu Luyao. Have the production-related subsidies of the government promoted the export of China’s firms?[J]. Journal of Management World, 2012(5): 24-42. ] |
[1] | LI Hongfei,HE Yingru,BI Xiaoli. Coupling coordination relationship between ecological environment and high-quality development in Lanzhou section of Yellow River Basin [J]. Arid Land Geography, 2022, 45(4): 1244-1253. |
[2] | WANG Ning-bo,LI Sheng-yu,WANG Hai-feng,XU Xin-wen,JIA Wen-yu,ZHANG Zhong-liang,TIAN Ye. Spatial variation and formation mechanism of dune morphology in the dominant wind direction on interdune corridors of complex ridges in central Taklimakan Desert [J]. , 2014, 37(1): 89-96. |
|