Arid Land Geography ›› 2021, Vol. 44 ›› Issue (5): 1299-1308.doi: 10.12118/j.issn.1000–6060.2021.05.11
• Earth Surface Process • Previous Articles Next Articles
WANG Liping1,2(),DUAN Sibo2(
),ZHANG Xiaoyu1,YU Yanru2
Received:
2020-08-18
Revised:
2021-04-06
Online:
2021-09-25
Published:
2021-09-22
Contact:
Sibo DUAN
E-mail:wlpn123@163.com;duansibo@caas.cn
WANG Liping,DUAN Sibo,ZHANG Xiaoyu,YU Yanru. Spatio-temporal distribution and variation characteristics of annual maximum land surface temperature in China during 2003-2018[J].Arid Land Geography, 2021, 44(5): 1299-1308.
Tab. 1
Climatic tendency rate and linear correlation coefficient of annual maximum surface temperature in different climatic zones in China during 2003—2018"
气候类型区 | 气候倾向率 | 线性相关系数 | |||
---|---|---|---|---|---|
均值/K·(10a)-1 | 均值 | 显著上升/% | 显著下降/% | ||
温带大陆性气候区 | 0.09 | 0.03 | 3.10 | 4.10 | |
高原山地气候区 | 0.56 | 0.09 | 3.15 | 1.07 | |
温带季风气候区 | -0.74 | -0.11 | 3.94 | 12.77 | |
亚热带季风气候区 | -0.55 | -0.13 | 2.88 | 11.45 | |
热带季风气候区 | -0.47 | -0.14 | 2.17 | 4.35 | |
全国 | -0.06 | -0.02 | 3.22 | 7.95 |
Tab. 3
Linear regression of annual maximum land surface temperature and annual maximum NDVI"
区域 | NDVI年最大值 | 地表温度年最大值 | |||||
---|---|---|---|---|---|---|---|
y=ax+b | 决定系数 | 相关系数 | y=ax+b | 决定系数 | 相关系数 | ||
Ⅰ | y=0.00x-5.32 | 0.71 | 0.85 | y=-0.22x+744.69 | 0.46 | -0.71 | |
Ⅱ | y=5.81x-1.10 | 0.73 | 0.87 | y=-0.18x+696.70 | 0.25 | -0.54 | |
Ⅲ | y=0.00x-5.02 | 0.84 | 0.92 | y=-0.15x+617.40 | 0.43 | -0.68 |
[1] | 邱丽莎, 何毅, 张立峰, 等. 祁连山MODIS LST时空变化特征及影响因素分析[J]. 干旱区地理, 2020, 43(3):762-737. |
[ Qiu lisha, He Yi, Zhang Lifeng, et al. Spatiotemporal variation characteristics and influence factors of MODIS LST in Qilian Mountains[J]. Arid Land Geography, 2020, 43(3):762-737. ] | |
[2] |
Wan Z, Zhang Y, Zhang Q, et al. Quality assessment and validation of the MODIS global land surface temperature[J]. International Journal of Remote Sensing, 2010, 25(1):261-274.
doi: 10.1080/0143116031000116417 |
[3] |
Li Z L, Tang B H, Wu H, et al. Satellite-derived land surface temperature: Current status and perspectives[J]. Remote Sensing of Environment, 2013, 131(131):14-37.
doi: 10.1016/j.rse.2012.12.008 |
[4] |
Hansen J, Sato M, Ruedy R, et al. Global temperature change[J]. Proc Natl Acad Sci U S A, 2006, 103(39):14288-14293.
pmid: 17001018 |
[5] |
Mao K B, Ma Y, Tan X L, et al. Global surface temperature change analysis based on MODIS data in recent twelve years[J]. Advances in Space Research, 2017, 59(2):503-512.
doi: 10.1016/j.asr.2016.11.007 |
[6] |
Susskind J, Schmidt G A, Lee J N, et al. Recent global warming as confirmed by AIRS[J]. Environmental Research Letters, 2019, 14(4):044030, doi: 10.1088/1748-9326/aafd4e.
doi: 10.1088/1748-9326/aafd4e |
[7] |
Wang L, Henderson M, Liu B H, et al. Maximum and minimum soil surface temperature trends over China, 1965-2014[J]. Journal of Geophysical Research: Atmospheres, 2018, 123:2004-2016.
doi: 10.1002/2017JD027283 |
[8] |
Mildrexler D J, Zhao M S, Running S W. A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests[J]. Journal of Geophysical Research Biogeosciences, 2011, 116(G3):G03025, doi: 10.1029/2010JG001486.
doi: 10.1029/2010JG001486 |
[9] |
Daly C, Halbleib M, Smith J I, et al. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States[J]. International Journal of Climatology, 2008, 28(15):2031-2064.
doi: 10.1002/joc.v28:15 |
[10] |
Mu Q Z, Zhao M S, Kimball J S, et al. A remotely sensed global terrestrial drought severity index[J]. Bulletin of the American Meteorological Society, 2013, 94(1):83-98.
doi: 10.1175/BAMS-D-11-00213.1 |
[11] | 孙灏, 马立茹, 蔡创创, 等. 干旱区地表温度和热岛效应演变研究--以宁夏沿黄城市带为例[J]. 干旱区地理, 2020, 43(9):694-705. |
[ Sun Hao, Ma Liru, Cai Chuangchuang, et al. Evolution of surface and heat island effect in arid areas: A case of city belt along the Yellow River in Ningxia[J]. Arid Land Geography, 2020, 43(9):694-705. ] | |
[12] |
Mcmillin M L. Estimation of sea surface temperatures from two infrared window measurements with different absorption[J]. Journal of Geophysical Research, 1975, 80(36):5113-5117.
doi: 10.1029/JC080i036p05113 |
[13] |
Duan S B, Li Z L, Wang C G, et al. Land-surface temperature retrieval from Landsat 8 single-channel thermal infrared data in combination with NCEP reanalysis data and ASTER GED product[J]. International Journal of Remote Sensing, 2018, 40(5-6):1763-1778.
doi: 10.1080/01431161.2018.1460513 |
[14] |
Wan Z M, Dozier J. A generalized split-window algorithm for retrieving land-surface temperature from space[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(4):892-905.
doi: 10.1109/36.508406 |
[15] |
Wan Z M, Li Z L. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(4):980-996.
doi: 10.1109/36.602541 |
[16] | Mildrexler D J, Zhao M, Cohen W B, et al. Thermal anomalies detect critical global land surface changes[J]. Journal of Applifd Meteorology and Climatology, 2018, 57(2):391-411. |
[17] |
Friedl M A, Davis F W. Sources of variation in radiometric surface temperature over a tallgrass prairie[J]. Remote Sensing of Environment, 1994, 48(1):1-17.
doi: 10.1016/0034-4257(94)90109-0 |
[18] |
Nemani R R, Running S W, Pielke R A, et al. Global vegetation cover changes from coarse resolution satellite data[J]. Journal of Geophysical Research Atmospheres, 1996, 101(D3):7157-7162.
doi: 10.1029/95JD02138 |
[19] |
Becker F, Li Z L. Towards a local split window method over land surfaces[J]. International Journal of Remote Sensing, 2007, 11(3):369-393.
doi: 10.1080/01431169008955028 |
[20] |
Prata A J, Caselles V, Coll C, et al. Thermal remote sensing of land surface temperature from satellites: Current status and future prospects[J]. Remote Sensing Reviews, 1995, 12(3):175-224.
doi: 10.1080/02757259509532285 |
[21] | 程清平, 王平, 谭小爱. 1961-2013年贵州省地面温度时空变化特征[J]. 南水北调与水利科技, 2018, 16(2):122-131. |
[ Cheng Qingping, Wang Ping, Tan Xiaoai. Temporal and variation characteristics of surface temperature in Guizhou during 1961-2013[J]. South-to-North Water Transfers and Water Science & Technology, 2018, 16(2):122-131. ] | |
[22] | 古丽吉米丽·艾尼, 迪丽努尔·阿吉, 古丽巴哈尔·吾布力. 全球气候变化对东疆地区的影响分析--以吐鲁番盆地为例[J]. 井冈山大学学报(自然科学版), 2011, 32(3):70-75. |
[ Aini Guljamila, Aji Dilnur, Ubul Gulbahar. Analysis of the effect of global climate change on east Xinjiang region (Turpan Basin as an example)[J]. Journal of Jinggangshan University (Natural Sciences Edition), 2011, 32(3):70-75. ] | |
[23] |
Hu Z Z. Long-term climate variations in China and global warming signals[J]. Journal of Geophysical Research, 2003, 108(D19):4614, doi: 10.1029/2003JD003651.
doi: 10.1029/2003JD003651 |
[24] |
Shi Y F, Shen Y P, Kang E, et al. Recent and future climate change in northwest China[J]. Climatic Change, 2006, 80(3-4):379-393.
doi: 10.1007/s10584-006-9121-7 |
[25] | Kim H S, Chung Y S, Tans P P, et al. Climatological variability of air temperature and precipitation observed in South Korea for the last 50 years[J]. Air Quality, Atmosphere & Health, 2016, 9(6):645-651. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 243
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 450
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|