Chaotic analysis of air pollution index time series of Lanzhou City in recent 10 years
YU Bo1,ZHOU Ying2,LIU Zu-han3,WANG Hai-peng4
(1 Ecological Security and Protection Key laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621006, Sichuan, China;2 School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China; 3 The Research Center for East-West Cooperation in China, The Key Lab of GIS Science of the Education Ministry PRC, East China Normal University,Shanghai 200241, China;4 Key Laboratory of Western China’s Environmental Systems (Ministry of Education) Lanzhou University, Lanzhou 730000, Gansu, China)
YU Bo,ZHOU Ying,LIU Zu-han,WANG Hai-peng. Chaotic analysis of air pollution index time series of Lanzhou City in recent 10 years[J]., 2014, 37(3): 570-578.
[3] CHEN L,OMAYE S T,YANG W. A comparison of two statistical models for analyzing the association between PM10 and hospital admissions for chronic obstructive pulmonary disease [J]. Toxicol Mech Method,2001,11(4):233-246.
[15] KHANNA N H. Measuring environmental quality:an index of pollution[J]. Ecological Economics,2000,35:191-202.
[16] HARRI N,TERI H,ARI K. Evolving the neural network model for forecasting air pollution time series[J]. Engineering Applications of Artificial Intelligence,2004,17:159-167.
[18] GRIVAS G,CHALOULAKOU A,KASSOMENOS P. An overview of the PM10 pollution problem in the Metropolitan Area of Athens,Greece:Assessment of controlling factors and potential impact of long range transport[J]. Science of the Total Environment,2007(1):1-13.
[20] HAVLICEK D,PRIBIL R,DUOBVSKSR O,et al. Chemical and mineralogical composition of solid fraction of ambient aerosol at different levels[J]. Atmospheric Environment,2000,34:3237- 3244.
[21] MITRA A P,SHARMA C. Indian aerosols:present status[J]. Chemosphere,2002,49:1175-1179.
[27] JIANG Dahe,ZHANG Yang,HU Xiang,et al. Progress in developing an ANN model for air pollution index forecast[J]. Atmospheric Environment,2004,38:7055-7064.
[43] AJJARAPU V,LEE B. Bifurcation. Theory and its application to nonlinear dynamical phenomena in an electrical power system[J]. IEEE POWRS,1992,7(1):424-431.
[55] KUGIUMTAIS D. State space reconstruction parameters in the analysis of chaotic time series-the role of the time window length[J]. Physica D,1999,(95):23-28.
[56] ALBANO A M,MUENCH J,SCHWARTZ C. SVD and Grassberger Procaccia algorithm[J]. Physical Review A,1988,38:3017-3026.
[57] ROSENSTEIN M T,COLLINS J J,DELUCA D J. A practical method for calculating largest Lyapunov exponents from small data sets[J]. Physica D,1993,65:117-134.
[58] CAO L. Practical method for determining the minimum embedding dimension of a scalar time series[J]. Physica D,1997,110(1-2):43-50.
[59] PANAS E,NINNI V. Are oil markets chaotic?A non-linear dynamic analysis[J]. Energy Economics,2000,22(5):549-568.
[60] 黄润生,黄浩. 混沌及其应用[M]. 武汉:武汉大学出版社,2000:198-202.
[61] GRASSBERGER P,PROCACCIA I. Measuring the strangeness of strange attractor[J]. Physica D,1983,9(1-2):189-208.
[62] ECKMAN J P,KAMPHORST S O,RUELLE D,et al. Lyapunov exponents from a time series[J]. Physical Review A,1986,34(4):4971-4980.
[63] WOLF A,SWIFT J B,SWINNY H L,et al. Determining Lyapunov exponents from a time series[J]. Physica D,1985,16(3):285-317.
[64] GALGANIL B G,STRELCYN J M. Kolmogorov entropy and numerical experiments[J]. Physical Review A,1976,14(3):2338- 2345.
[65] GASSBERGER P,PROCACCIA L. Estimical of the Kolmogorov entropy from a chaotic signals[J]. Physical Review A,1983,28(4):2591-2593.