Arid Land Geography ›› 2026, Vol. 49 ›› Issue (1): 23-34.doi: 10.12118/j.issn.1000-6060.2025.107
• Climatology and Hydrology • Previous Articles Next Articles
LI Ruonan1,2,3(
), LI Junli1,3(
), LIU Shuaiqi1,2,3, DU Weibing4
Received:2025-03-01
Revised:2025-07-21
Online:2026-01-25
Published:2026-01-18
Contact:
LI Junli
E-mail:liruonan23@mails.ucas.ac.cn;lijl@ms.xjb.ac.cn
LI Ruonan, LI Junli, LIU Shuaiqi, DU Weibing. Glacier changes and topographic factors of the Ulugh Muztagh from 1960 to 2023[J].Arid Land Geography, 2026, 49(1): 23-34.
Tab. 3
Glacier area variations and retreat characteristics in different periods"
| 年份 | 面积/km2 | 变化量 /km2 | 退缩速率 /km2·a-1 | 退缩率 /% | 年均退缩 率/%·a-1 |
|---|---|---|---|---|---|
| 1960 | 703.51±6.97 | - | - | - | - |
| 1986 | 678.32±12.83 | -25.19 | 0.97 | 3.58 | 0.14 |
| 1995 | 674.94±12.71 | -3.38 | 0.38 | 0.50 | 0.06 |
| 2004 | 671.48±13.43 | -3.46 | 0.38 | 0.51 | 0.06 |
| 2015 | 663.85±14.31 | -7.63 | 0.69 | 1.14 | 0.10 |
| 2023 | 651.50±5.83 | -12.35 | 1.54 | 1.86 | 0.23 |
| 总计 | - | -52.01 | 0.83 | 7.39 | 0.12 |
Tab. 4
Correlation and significance of topographic factors with glacier area and terminus retreat"
| 因子 | 冰川规模 | 最小海拔 | 最大海拔 | 平均海拔 | 平均坡度 | 南北向 | 东西向 |
|---|---|---|---|---|---|---|---|
| 面积退缩量 | 0.58*** | -0.21* | 0.69*** | 0.26** | -0.27** | 0.15 | -0.02 |
| 面积退缩率 | -0.28** | -0.08 | -0.31** | -0.34*** | 0.29** | 0.10 | -0.10 |
| 末端退缩速率 | 0.37** | -0.21 | 0.51*** | 0.28** | 0.03 | 0.11 | 0.10 |
Tab. 5
Annual average temperature and annual average precipitation in the major mountain ranges of western China"
| 山系 | 年平均气温/℃ | 年平均降水量/mm | 数据来源 |
|---|---|---|---|
| 木孜塔格山 | -11.5 | 413 | 车彦军等[ |
| 阿尔泰山 | -8.0~4.1 | 75~700 | 戴玉萍等[ |
| 天山 | 8.0 | 500~1200 | 邢武成等[ |
| 阿尔金山 | 3.5 | 50~100 | 张聪等[ |
| 祁连山 | 4.0 | 250 | 程锦泉 [ |
| 东昆仑山 | 0.0~8.0 | 500~800 | 李成秀[ |
| 中昆仑山 | 0.0~8.0 | 100 | 李成秀[ |
| 西昆仑山 | 0.0~8.0 | 20 | 李成秀[ |
| 喀喇昆仑山北坡 | 0.0~6.0 | 600 | 李海娟[ |
| 唐古拉山 | -1.6 | 420 | 张裕[ |
| 念青唐古拉山 | -1.0 | 400~700 | 李亚鹏等[ |
| 喜马拉雅山(珠峰绒布河流域) | 2.0 | 371 | 刘玉婷等[ |
Tab. 6
Retreat rates of glaciers in mountain ranges and typical areas of western China"
| 山脉 | 典型区域 | 最高海拔/m | 平均海拔/m | 研究时段 | 冰川面积年均退缩率/%·a-1 | 数据来源 |
|---|---|---|---|---|---|---|
| 中昆仑山 | 木孜塔格山区 | 6973 | 5557 | 1960—2023 | 0.12 | 本研究 |
| 阿尔泰山 | 友谊峰 | 4374 | - | 1959—2008 | 0.39 | 骆书飞等[ |
| 天山 | 阿克苏河流域 | - | 2233 | 1975—2016 | 0.63 | Zhang等[ |
| 依连哈比尔尕山 | 4590 | - | 2016—2022 | 0.75 | 李若楠等[ | |
| 阿尔金山 | 西段 | 6228 | 5800 | 1973—2020 | 0.44 | 田洪阵等[ |
| 中段 | - | 4000~4200 | 1973—2020 | 0.32 | 田洪阵等[ | |
| 东段 | - | 5177 | 1973—2020 | 0.62 | 田洪阵等[ | |
| 祁连山 | 团结峰地区 | 5826 | - | 1966—2020 | 0.32 | 石梦寒[ |
| 西昆仑山 | 昆仑峰区 | 7167 | - | 1976—2010 | 0.12 | 李成秀等[ |
| 中昆仑山 | 布喀塔格峰 | 6860 | - | 1973—2010 | 0.14 | 姜珊[ |
| 马兰冰帽 | 6056 | - | 1973—2010 | 0.16 | 姜珊[ | |
| 喀喇昆仑山 | 克勒青河流域 | 8611 | 5400 | 1978—2015 | 0.22 | 许艾文等[ |
| 克勒青河流域 | 8611 | 5400 | 2000—2016 | 0.14 | 王盼盼[ | |
| 唐古拉山 | 格拉丹东地区 | 6621 | 5182~6621 | 1990—2015 | 0.26 | 王聪强等[ |
| 冬克玛底地区 | 6100 | 5173~6100 | 1990—2015 | 0.68 | 王聪强等[ | |
| 布加岗日地区 | 6328 | 4175~6328 | 1990—2015 | 0.75 | 王聪强等[ | |
| 中段 | - | - | 1990—2015 | 0.89 | 王聪强等[ | |
| 念青唐古拉山 | 西段 | 7093 | - | 1976—2011 | 0.59 | 冀琴等[ |
| 东部 | - | - | 1999—2015 | 1.24 | Ji等[ | |
| 纳木错流域 | - | - | 1970—2000 | 0.51 | 吴艳红[ | |
| 喜马拉雅山 | 珠穆朗玛峰保护区 | 8849 | - | 1976—2006 | 0.52 | 聂勇等[ |
| [24] | Maslov K A, Persello C, Schellenberger T, et al. Globally scalable glacier mapping by deep learning matches expert delineation accuracy[J]. Nature Communications, 2025, 16: 43, doi: 10.1038/s41467-024-54956-x. |
| [25] |
Jones D B, Harrison S, Anderson K, et al. Rock glaciers and mountain hydrology: A review[J]. Earth-Science Reviews, 2019, 193: 66-90.
doi: 10.1016/j.earscirev.2019.04.001 |
| [26] | 孙永, 易朝路, 刘金花, 等. 昆仑山木孜塔格地区冰川发育水汽来源探讨[J]. 地球环境学报, 2018, 9(4): 383-391. |
| [Sun Yong, Yi Zhaolu, Liu Jinhua, et al. Discussing sources of moisture feeding the glaciers on the Ulugh Muztagh, Kunlun Mountain[J]. Journal of Earth Environment, 2018, 9(4): 383-391.] | |
| [27] | 蒋宗立, 张俊丽, 张震, 等. 1972—2011年东昆仑山木孜塔格峰冰川面积变化与物质平衡遥感监测[J]. 国土资源遥感, 2019, 31(4): 128-136. |
| [Jiang Zongli, Zhang Junli, Zhang Zhen, et al. Glacier change and mass balance(1972—2011) in Ulugh Muztagh, eastern Kunlun Mountains, monitored by remote sensing[J]. Remote Sensing for Land & Resources, 2019, 31(4): 128-136.] | |
| [28] | 郭万钦, 刘时银, 许君利, 等. 木孜塔格西北坡鱼鳞川冰川跃动遥感监测[J]. 冰川冻土, 2012, 34(4): 765-774. |
| [Guo Wanqin, Liu Shiyin, Xu Junli, et al. Monitoring recent surging of the Yulinchuan glacier on north slopes of Muztag range by remote sensing[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 765-774.] | |
| [29] | 崔志勇, 周文明. 基于RS和GIS技术提取木孜塔格峰冰川面积变化[J]. 现代测绘, 2013, 36(4): 6-8. |
| [Cui Zhiyong, Zhou Wenming. Extracting area change of glaciers in the Ulugh Muztagh region based on RS and GIS[J]. Modern Surveying and Mapping, 2013, 36(4): 6-8.] | |
| [30] | 曾敏. 基于模拟多光谱的木孜塔格峰冰雪信息提取与变化分析[D]. 成都: 成都理工大学, 2021. |
| [Zeng Min. Snow and ice information extraction and change analysis of Muztagh Peak based on simulated multispectral[D]. Chengdu: Chengdu University of Technology, 2021.] | |
| [31] |
车彦军, 陈丽花, 谷来磊, 等. 东昆仑木孜塔格峰地区冰湖演变与冰川物质亏损[J]. 冰川冻土, 2023, 45(4): 1254-1265.
doi: 10.7522/j.issn.1000-0240.2023.0096 |
|
[Che Yanjun, Chen Lihua, Gu Lailei, et al. Evolution of glacial lakes and glacier mass loss in Ulugh Muztagh area of eastern Kunlun Mountains[J]. Journal of Glaciology and Geocryology, 2023, 45(4): 1254-1265.]
doi: 10.7522/j.issn.1000-0240.2023.0096 |
|
| [32] | Gu L, Che Y J, Zhang M J, et al. Slight mass loss in glaciers over the Ulugh Muztagh Mountains during the period from 2000 to 2020[J]. Remote Sensing, 2023, 15(9): 2338, doi: 10.3390/rs15092338. |
| [33] | 谢自楚, 刘潮海. 冰川学导论[M]. 上海: 上海科学普及出版社, 2010. |
| [Xie Zichu, Liu Chaohai. Introduction to glaciology[M]. Shanghai: Shanghai Science Popularization Press, 2010.] | |
| [34] | 刘时银, 郭万钦, 许君利, 等. 中国第二次冰川编目数据集(版本1.0)[DB/OL]. 寒区旱区科学数据中心. [2021-01-07]. https://www.doi.org/10.12072/ncdc.Westdc.db0006.2020. |
| [Liu Shiyin, Guo Wanqin, Xu Junli, et al. The second glacier inventory dataset of China (Version 1.0)[DB/OL]. Cold and Arid Regions Science Data Center at Lanzhou. [2021-01-07]. https://www.doi.org/10.12072/ncdc.Westdc.db0006.2020.] | |
| [35] |
李若楠, 李均力, 李爽爽, 等. 基于Sentinel-2的依连哈比尔尕冰川变化监测[J]. 干旱区研究, 2024, 41(6): 940-950.
doi: 10.13866/j.azr.2024.06.04 |
| [Li Ruonan, Li Junli, Li Shuangshuang, et al. Monitoring of Yiliha Bierga glacier change based on Sentinel-2[J]. Arid Land Geography, 2024, 41(6): 940-950.] | |
| [36] |
Bolch T, Menounos B, Wheate R. Landsat-based inventory of glaciers in western Canada, 1985—2005[J]. Remote Sensing of Environment, 2010, 114(1): 127-137.
doi: 10.1016/j.rse.2009.08.015 |
| [1] |
Hugonnet R, McNabb R, Berthier E, et al. Accelerated global glacier mass loss in the early twenty-first century[J]. Nature, 2021, 592(7856): 726-731.
doi: 10.1038/s41586-021-03436-z |
| [2] |
Rounce D R, Hock R, Maussion F, et al. Global glacier change in the 21st century: Every increase in temperature matters[J]. Science, 2023, 379: 78-83.
doi: 10.1126/science.abo1324 pmid: 36603094 |
| [3] |
Bhattacharya A, Bolch T, Mukherjee K, et al. High Mountain Asian glacier response to climate revealed by multi-temporal satellite observations since the 1960s[J]. Nature Communications, 2021, 12: 4133, doi: 10.1038/s41467-021-24180-y.
pmid: 34226559 |
| [4] | Yang L, Zhao G G, Mu X M, et al. Historical and projected evolutions of glaciers in response to climate change in High Mountain Asia[J]. Environmental Research, 2023, 237(2): 117037, doi: 10.1016/j.envres.2023.117037. |
| [5] |
Miles E, McCarthy M, Dehecq A, et al. Health and sustainability of glaciers in High Mountain Asia[J]. Nature Communications, 2021, 12(1): 2868, doi: 10.1038/s41467-021-23073-4.
pmid: 34001875 |
| [6] |
Zheng G X, Allen S K, Bao A M, et al. Increasing risk of glacial lake outburst floods from future Third Pole deglaciation[J]. Nature Climate Change, 2021, 11: 411-417.
doi: 10.1038/s41558-021-01028-3 |
| [7] |
Taylor C, Robinson T R, Dunning S, et al. Glacial lake outburst floods threaten millions globally[J]. Nature Communications, 2023, 14: 487, doi: 10.1038/s41467-023-36033-x.
pmid: 36750561 |
| [8] |
Liu J, Wu Y M, Gao X. Increase in occurrence of large glacier-related landslides in the high mountains of Asia[J]. Scientific Reports, 2021, 11: 1635, doi: 10.1038/s41598-021-81212-9.
pmid: 33452415 |
| [9] |
Shangguan D H, Ding Y J, Liu S Y, et al. Quick release of internal water storage in a glacier leads to underestimation of the hazard potential of glacial lake outburst floods from Lake Merzbacher in central Tianshan Mountains[J]. Geophysical Research Letters, 2017, 44(19): 9786-9795.
doi: 10.1002/grl.v44.19 |
| [10] | Mondal S K, Patel V D, Bharti R, et al. Causes and effects of Shisper glacial lake outburst flood event in Karakoram in 2022[J]. Geomatics, Natural Hazards and Risk, 2023, 14(1): 2264460, doi: 10.1080/19475705.2023.2264460. |
| [11] | Lu H L, Qiu J, Li M J, et al. Temporal and spatial variations in the sub-daily precipitation structure over the Qinghai-Tibet Plateau (QTP)[J]. Science of the Total Environment, 2024, 915: 170153, doi: 10.1016/j.scitotenv.2024.170153. |
| [37] | 聂勇, 张镱锂, 刘林山, 等. 近30年珠穆朗玛峰国家自然保护区冰川变化的遥感监测[J]. 地理学报, 2010, 65(1): 13-28. |
| [Nie Yong, Zhang Yili, Liu Linshan, et al. Monitoring glacier change based on remote sensing in the Mt. Qomolangma National Nature Preserve, 1976—2006[J]. Acta Geographica Sinica, 2010, 65(1): 13-28.] | |
| [38] |
Evans I S. Local aspect asymmetry of mountain glaciation: A global survey of consistency of favoured directions for glacier numbers and altitudes[J]. Geomorphology, 2006, 73(1-2): 166-184.
doi: 10.1016/j.geomorph.2005.07.009 |
| [39] |
White A, Copland L. Area change of glaciers across northern Ellesmere Island, Nunavut, between -1999 and -2015[J]. Journal of Glaciology, 2018, 64(246): 609-623.
doi: 10.1017/jog.2018.49 |
| [40] | 李成秀. 昆仑山冰川和积雪变化的遥感监测[D]. 兰州: 兰州大学, 2014. |
| [Li Chengxiu. Remote sensing monitoring of glacier and snow cover changes in the Kunlun Mountain[D]. Lanzhou: Lanzhou University, 2014.] | |
| [41] | Cuffey K M, Paterson W S B. The physics of glaciers (Edition 4)[M]. Burlington: Academic Press, 2010: 1-7. |
| [42] |
戴玉萍, 王璞玉, 张正勇, 等. 中国阿尔泰山冰川变化脆弱性及适应能力影响因素分析[J]. 冰川冻土, 2024, 46(2): 525-538.
doi: 10.7522/j.issn.1000-0240.2024.0043 |
|
[Dai Yuping, Wang Puyu, Zhang Zhengyong, et al. Analysis of glacier change vulnerability and influencing factors of adaptability in the Chinese Altai Mountains[J]. Journal of Glaciology and Geocryology, 2024, 46(2): 525-538.]
doi: 10.7522/j.issn.1000-0240.2024.0043 |
|
| [43] |
邢武成, 李忠勤, 张慧, 等. 1959年来中国天山冰川资源时空变化[J]. 地理学报, 2017, 72(9): 1594-1605.
doi: 10.11821/dlxb201709005 |
|
[Xing Wucheng, Li Zhongqin, Zhang Hui, et al. Spatial-temporal variation of glacier resources in Chinese Tianshan Mountains since 1959[J]. Acta Geographica Sinica, 2017, 72(9): 1594-1605.]
doi: 10.11821/dlxb201709005 |
|
| [44] |
张聪, 姚晓军, 刘时银, 等. 1970—2016年阿尔金山冰川长度变化[J]. 冰川冻土, 2021, 43(1): 49-60.
doi: 10.7522/j.issn.1000-0240.2020.0038 |
|
[Zhang Cong, Yao Xiaojun, Liu Shiyin, et al. Variation of glacier length in the Altun Mountains during 1970—2016[J]. Journal of Glaciology and Geocryology, 2021, 43(1): 49-60.]
doi: 10.7522/j.issn.1000-0240.2020.0038 |
|
| [45] | 程锦泉. 祁连山冰川储量估算及未来变化研究[D]. 兰州: 兰州大学, 2024. |
| [Cheng Jinquan. Study on glacier ice volume estimationand future changes in the Qilian Mountains[D]. Lanzhou: Lanzhou University, 2024.] | |
| [46] | 李海娟. 近30年喀喇昆仑山东部北坡主要冰川变化的遥感监测[D]. 昆明: 云南大学, 2021. |
| [Li Haijuan. Remote sensing study on main glacier changes in the past 30 years on the north slope of the eastern Karakoram[D]. Kunming: Yunnan University, 2021.] | |
| [47] | 张裕. 1980—2020年唐古拉山冰川变化及其对气候波动的响应[D]. 大连: 辽宁师范大学, 2023. |
| [Zhang Yu. Glacier change in Tanggula Mountain and its response to climate fluctuation from 1980 to 2020[D]. Dalian: Liaoning Normal University, 2023.] | |
| [48] |
李亚鹏, 张威, 柴乐, 等. 1984—2019年念青唐古拉山中段冰川ELA变化估算及特征分析[J]. 冰川冻土, 2022, 44(4): 1165-1174.
doi: 10.7522/j.issn.1000-0240.2022.0108 |
|
[Li Yapeng, Zhang Wei, Chai Le, et al. Estimation and characteristic analysis of ELA variations in middle section of the Nyainqêntanglha Mountains from 1984 to 2019[J]. Journal of Glaciology and Geocryology, 2022, 44(4): 1165-1174.]
doi: 10.7522/j.issn.1000-0240.2022.0108 |
|
| [49] |
刘玉婷, 刘景时, 古丽格纳·哈力木拉提, 等. 喜马拉雅山北坡典型冰川流域水文过程比较研究[J]. 冰川冻土, 2022, 44(3): 1063-1069.
doi: 10.7522/j.issn.1000-0240.2022.099 |
| [12] |
姚晓军, 刘时银, 郭万钦, 等. 近50 a来中国阿尔泰山冰川变化——基于中国第二次冰川编目成果[J]. 自然资源学报, 2012, 27(10): 1734-1745.
doi: 10.11849/zrzyxb.2012.10.011 |
|
[Yao Xiaojun, Liu Shiyin, Guo Wanqin, et al. Glacier change of Altay Mountain in China from 1960 to 2009: Based on the Second Glacier Inventory of China[J]. Journal of Natural Resources, 2012, 27(10): 1734-1745.]
doi: 10.11849/zrzyxb.2012.10.011 |
|
| [13] | Yu X Y, Lu C H. Alpine glacier change in the eastern Altun Mountains of northwest China during 1972—2010[J]. PLoS ONE, 2015, 10(2): e0117262, doi: 10.1371/journal.pone.0117262. |
| [14] |
牟建新, 李忠勤, 王璞玉, 等. 萨吾尔山冰川现状及演化过程[J]. 干旱区地理, 2024, 47(8): 1277-1291.
doi: 10.12118/j.issn.1000-6060.2024.112 |
|
[Mu Jianxin, Li Zhongqin, Wang Puyu, et al. Glaciers in Saur Mountains: Current situation and evolutionary process[J]. Arid Land Geography, 2024, 47(8): 1277-1291.]
doi: 10.12118/j.issn.1000-6060.2024.112 |
|
| [15] | 王璞玉, 李忠勤, 李慧林, 等. 近50年来天山地区典型冰川厚度及储量变化[J]. 地理学报, 2012, 67(7): 929-940. |
|
[Wang Puyu, Li Zhongqin, Li Huilin, et al. Changes of ice-thickness and volume for representative glaciers in Tianshan Mountains in the past 50 years[J]. Acta Geographica Sinica, 2012, 67(7): 929-940.]
doi: 10.11821/xb201207006 |
|
| [16] |
Bolch T, Kulkarni A, Kääb A, et al. The state and fate of Himalayan glaciers[J]. Science, 2012, 336(6079): 310-314.
doi: 10.1126/science.1215828 pmid: 22517852 |
| [17] | Zhu M L, Yao T D, Yang W, et al. Possible causes of anomalous glacier mass balance in the western Kunlun Mountains[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(7): e2021JD035705, doi: 10.1029/2021JD035705. |
| [18] |
贾尚坤, 魏俊锋, 张法刚, 等. 喜马拉雅山入湖冰川物质变化研究综述[J]. 干旱区地理, 2024, 47(7): 1156-1164.
doi: 10.12118/j.issn.1000-6060.2023.566 |
|
[Jia Shangkun, Wei Junfeng, Zhang Fagang, et al. Research review of mass changes for lake-terminating glaciers in the Himalayas[J]. Arid Land Geography, 2024, 47(7): 1156-1164.]
doi: 10.12118/j.issn.1000-6060.2023.566 |
|
| [19] | Li J W, Sun M P, Yao X J, et al. A review of Karakoram glacier anomalies in High Mountains Asia[J]. Water, 2023, 15(18): 3215, doi: 10.3390/w15183215. |
| [49] |
[Liu Yuting, Liu Jingshi, Halimulati Guligna, et al. Comparison of hydrological regime between two glacier-fed watersheds in the north Himalayas[J]. Journal of Glaciology and Geocryology, 2022, 44(3): 1063-1069.]
doi: 10.7522/j.issn.1000-0240.2022.099 |
| [50] | 骆书飞, 李忠勤, 王璞玉, 等. 近50年来中国阿尔泰山友谊峰地区冰川储量变化[J]. 干旱区资源与环境, 2014, 28(5): 180-185. |
| [Luo Shufei, Li Zhongqin, Wang Puyu, et al. Glacier volume change in Youyi area of Altay Mountains, China from 1959 to 2008[J]. Journal of Arid Land Resources and Environment, 2014, 28(5): 180-185.] | |
| [51] |
Zhang Q F, Chen Y N, Li Z, et al. Glacier changes from 1975 to 2016 in the Aksu River Basin, central Tianshan Mountains[J]. Journal of Geographical Sciences, 2019, 29(6): 984-1000.
doi: 10.1007/s11442-019-1640-z |
| [52] |
田洪阵, 肖月, 杨太保, 等. 1973—2020 年阿尔金山冰川面积变化及其对气温变化的响应[J]. 冰川冻土, 2021, 43(5): 1424-1434.
doi: 10.7522/j.issn.1000-0240.2021.0093 |
|
[Tian Hongzhen, Xiao Yue, Yang Taibao, et al. Glacier area changes and their responses to air temperature changes in the Altun Mountains from 1973 to 2020[J]. Journal of Glaciology and Geocryology, 2021, 43(5): 1424-1434.]
doi: 10.7522/j.issn.1000-0240.2021.0093 |
|
| [53] | 石梦寒. 基于遥感的祁连山团结峰地区冰川变化及运动特征分析[D]. 兰州: 兰州大学, 2023. |
| [Shi Menghan. Analysis of glacier variation and movement characteristics in Tuanjie Peak of Qilian Mountain based on remote sensing[D]. Lanzhou: Lanzhou University, 2023.] | |
| [54] | 李成秀, 杨太保, 田洪阵. 近40年来西昆仑山冰川及冰湖变化与气候因素[J]. 山地学报, 2015, 33(2): 157-165. |
| [Li Chengxiu, Yang Taibao, Tian Hongzhen. Variation of western Kunlun Mountain glaciers monitored by remote sensing during 1976—2010[J]. Mountain Research, 2015, 33(2): 157-165.] | |
| [55] | 姜珊. 基于遥感的东昆仑山冰川和气候变化研究[D]. 兰州: 兰州大学, 2012. |
| [20] |
Wang Y T, Hou S G, Huai B J, et al. Glacier anomaly over the western Kunlun Mountains, northwestern Tibetan Plateau, since the 1970s[J]. Journal of Glaciology, 2018, 64(246): 624-636.
doi: 10.1017/jog.2018.53 |
| [21] | Zhang C, Yao X J, Li S J, et al. Glacier change in the west Kunlun main peak area from 2000 to 2020[J]. Remote Sensing, 2023, 15(17): 4236, doi: 10.3390/rs15174236. |
| [22] |
Li Z J, Wang N L, Chen A A, et al. Slight change of glaciers in the Pamir over the period 2000—2017[J]. Arctic, Antarctic, and Alpine Research, 2022, 54(1): 13-24.
doi: 10.1080/15230430.2022.2028475 |
| [23] |
Farinotti D, Immerzeel W W, de Kok R J, et al. Manifestations and mechanisms of the Karakoram glacier anomaly[J]. Nature Geoscience, 2020, 13: 8-16.
doi: 10.1038/s41561-019-0513-5 pmid: 31915463 |
| [55] | [Jiang Shan. Research on glacier and climate change in the East Kunlun Mountains based on remote sensing[D]. Lanzhou: Lanzhou University, 2012.] |
| [56] |
许艾文, 杨太保, 王聪强, 等. 1978—2015年喀喇昆仑山克勒青河流域冰川变化的遥感监测[J]. 地理科学进展, 2016, 35(7): 878-888.
doi: 10.18306/dlkxjz.2016.07.009 |
|
[Xu Aiwen, Yang Taibao, Wang Congqiang, et al. Variation of glaciers in the Shaksgam River Basin, Karakoram Mountains during 1978—2015[J]. Progress in Geography, 2016, 35(7): 878-888.]
doi: 10.18306/dlkxjz.2016.07.009 |
|
| [57] | 王盼盼. 基于多源遥感数据的喀喇昆仑山克勒青河谷冰川变化研究[D]. 兰州: 西北师范大学, 2021. |
| [Wang Panpan. Glacier change in Shaksgam Valley, Karakoram Mountains based on multi-source remote sensing data[D]. Lanzhou: Northwest Normal University, 2021.] | |
| [58] | 王聪强. 1990—2015年唐古拉山冰川对气候变化响应的研究[D]. 兰州: 兰州大学, 2017. |
| [Wang Congqiang. The variation of glacier and its response to climate change in the Tanggula Mountains from 1990 to 2015[D]. Lanzhou: Lanzhou University, 2017.] | |
| [59] | 冀琴, 杨太保, 田洪阵, 等. 念青唐古拉山西段近40年冰川与气候变化研究[J]. 干旱区资源与环境, 2014, 28(7): 12-17. |
| [Ji Qin, Yang Taibao, Tian Hongzhen, et al. Relation between glacier retreat and climate change in the western Nyainqentanglha in the past 40 years[J]. Journal of Arid Land Resources and Environment, 2014, 28(7): 12-17.] | |
| [60] | Ji Q, Yang T B, Dong J, et al. Glacier variations in response to climate change in the eastern Nyainqêntanglha range, Tibetan Plateau from 1999 to 2015[J]. Arctic, Antarctic, and Alpine Research, 2018, 50(1): 1435844, doi: 10.1080/15230430.2018.1435844. |
| [61] | 吴艳红, 朱立平, 叶庆华, 等. 纳木错流域近30年来湖泊-冰川变化对气候的响应[J]. 地理学报, 2007, 62(3): 301-311. |
| [Wu Yanhong, Zhu Liping, Ye Qinghua, et al. The response of lake-glacier area change to climate variations in Namco Basin, central Tibetan Plateau, during the last three decades[J]. Acta Geographica Sinica, 2007, 62(3): 301-311.] |
| [1] | YAN Jinye, MA Zhengquan, SUN Xuanxuan, Alim ABBAS, Palida YAHEFU. Spatiotemporal variations and potential sources of PM2.5 and PM10 in the “Urumqi-Changji-Shihezi” urban agglomeration from 2015 to 2023 [J]. Arid Land Geography, 2025, 48(3): 405-420. |
| [2] | XIA Wenhao, WANG Mingyang, JIANG Lei. Spatiotemporal variation trends and convergence analysis of agricultural carbon emission intensity in Xinjiang [J]. Arid Land Geography, 2023, 46(7): 1145-1154. |
| [3] | LI Na,WU Yongli,ZHAO Guixiang,QIAN Jinxia,LI Fen,ZHAO Haiying,HAN Pu. Interannual variations of extreme air temperature events and its response to regional warming in Shanxi Province in recent 60 years [J]. Arid Land Geography, 2023, 46(3): 337-348. |
| [4] |
ZHAO Jian-ting, WANG Yan-jun, SU Bu-da, TAO Hui, JIANG Tong.
Spatiotemporal distributions of temperature,precipitation,evapotranspiration,and drought in the Indus River Basin [J]. Arid Land Geography, 2020, 43(2): 349-359. |
|
||
