| [1] |
姚檀栋, 邬光剑, 徐柏青, 等. “亚洲水塔”变化与影响[J]. 中国科学院院刊, 2019, 34(11): 1203-1209.
|
|
[Yao Tandong, Wu Guangjian, Xu Baiqing, et al. Asian water tower change and its impacts[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1203-1209. ]
|
| [2] |
Jones D B, Harrison S, Anderson K, et al. Rock glaciers represent hidden water stores in the Himalaya[J]. Science of the Total Environment, 2021, 793: 145368, doi: 10.1016/j.scitotenv.2021.145-368.
|
| [3] |
Messerli B, Viviroli D, Weingartner R. Mountains of the world: Vu-lnerable water towers for the 21st century[J]. AMBIO: A Journal of the Human Environment, 2004, 33(Suppl. 13): 29-34.
doi: 10.1007/0044-7447-33.sp13.29
|
| [4] |
Viviroli D, Dürr H H, Messerli B, et al. Mountains of the world, water towers for humanity: Typology, mapping, and global significance[J]. Water Resources Research, 2007, 43(7): W07447, doi: 10.1029/2006WR005653.
|
| [5] |
Li Z J, Wang N L, Chen A A, et al. Slight change of glaciers in the Pamir over the period 2000—2017[J]. Arctic, Antarctic, and Alpine Research, 2022, 54(1): 13-24.
doi: 10.1080/15230430.2022.2028475
|
| [6] |
Haeberli W, Hallet B, Arenson L, et al. Permafrost creep and rock glacier dynamics[J]. Permafrost and Periglacial Processes, 2006, 17(3): 189-214.
doi: 10.1002/(ISSN)1099-1530
|
| [7] |
Berthling I. Beyond confusion: Rock glaciers as cryo-conditioned landforms[J]. Geomorphology, 2011, 131(3-4): 98-106.
doi: 10.1016/j.geomorph.2011.05.002
|
| [8] |
Mayr E, Hagg W. Debriscovered glaciers[M]. Berlin: Springer Cham, 2019: 59-71.
|
| [9] |
Cai J X, Wang X W, Liu G X, et al. A comparative study of active rock glaciers mapped from geomorphic-and kinematic-based approaches in Daxue Shan, southeast Tibetan Plateau[J]. Remote Sensing, 2021, 13(23): 4931, doi: 10.3390/rs13234931.
|
| [10] |
Jones D B, Harrison S, Anderson K, et al. Rock glaciers and mountain hydrology: A review[J]. Earth-Science Reviews, 2019, 193: 66-90.
doi: 10.1016/j.earscirev.2019.04.001
|
| [11] |
Winkler G, Wagner T, Pauritsch M, et al. Identification and assessment of groundwater flow and storage components of the relict Schöneben Rock glacier, Niedere Tauern Range, eastern Alps (Austria)[J]. Hydrogeology Journal, 2016, 24(4): 937-953.
doi: 10.1007/s10040-015-1348-9
|
| [12] |
Wagner T, Brodacz A, Krainer K, et al. Active rock glaciers as shallow groundwater reservoirs, Austrian Alps[J]. Grundwasser, 2020, 25(3): 215-230.
doi: 10.1007/s00767-020-00455-x
|
| [13] |
Janke J R, Bellisario A C, Ferrando F. Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile[J]. Geomorphology, 2015, 241: 98-121.
doi: 10.1016/j.geomorph.2015.03.034
|
| [14] |
Brenning A. Geomorphological, hydrological and climatic significance of rock glaciers in the Andes of central Chile (33°-35°S)[J]. Permafrost and Periglacial Processes, 2005, 16(3): 231-240.
doi: 10.1002/ppp.v16:3
|
| [15] |
Azócar G F, Brenning A, Processes P. Hydrological and geomorphological significance of rock glaciers in the dry Andes, Chile (27°-33°S)[J]. Permafrost and Periglacial Processes, 2010, 21(1): 42-53.
doi: 10.1002/ppp.v21:1
|
| [16] |
Zhang B, Liu G, Wang X, et al. Semi-automated mapping of complex-terrain mountain glaciers by integrating L-band SAR amplitude and interferometric coherence[J]. Remote Sensing, 2022, 14(9): 1993, doi: 10.3390/rs14091993.
|
| [17] |
Bolch T, Kamp U. Glacier mapping in high mountains using DEMs, Landsat and ASTER data[J]. Grazer Schriften der Geographie und Raumforschung, 2006, 41: 37-48.
|
| [18] |
Rastner P, Strozzi T, Paul F. Fusion of multi-source satellite data and DEMs to create a new glacier inventory for Novaya Zemlya[J]. Remote Sensing, 2017, 9(11): 1122, doi: 10.3390/rs9111122.
|
| [19] |
Xie F M, Liu S Y, Gao Y, et al. Derivation of supraglacial debris cover by machine learning algorithms on the Gee Platform: A case study of glaciers in the Hunza Valley[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020, 3: 417-424.
|
| [20] |
Atwood D K, Meyer F, Arendt A. Using L-band SAR coherence to delineate glacier extent[J]. Canadian Journal of Remote Sensing, 2014, 36(Suppl. 1): 186-195.
|
| [21] |
蒋宗立, 丁永建, 刘时银, 等. 基于SAR的表碛覆盖型冰川边界定位研究[J]. 地球科学进展, 2012, 27(11): 1245-1251.
doi: 10.11867/j.issn.1001-8166.2012.11.1245
|
|
[Jiang Zongli, Ding Yongjian, Liu Shiyin, et al. A study of the debris-covered glacier limit based on SAR[J]. Advances in Earth Science, 2012, 27(11): 1245-1251. ]
doi: 10.11867/j.issn.1001-8166.2012.11.1245
|
| [22] |
Huang L, Li Z, Tian B, et al. Recognition of supraglacial debris in the Tianshan Mountains on polarimetric SAR images[J]. Remote Sensing of Environment, 2014, 145: 47-54.
doi: 10.1016/j.rse.2014.01.020
|
| [23] |
Lu Y J, Zhang Z, Kong Y R, et al. Integration of optical, SAR and DEM data for automated detection of debris-covered glaciers over the western Nyainqentanglha using a random forest classifier[J]. Cold Regions Science and Technology, 2022, 193: 103421, doi: 10.1016/j.coldregions.2021.103421.
|
| [24] |
黄丹妮, 张震, 张莎莎, 等. 东帕米尔高原冰川运动特征分析[J]. 干旱区地理, 2021, 44(1): 131-140.
doi: 10.12118/j.issn.1000–6060.2021.01.14
|
|
[Huang Danni, Zhang Zhen, Zhang Shasha, et al. Characteristics of glacier movement in the eastern Pamir Plateau[J]. Arid Land Geography, 2021, 44(1): 131-140. ]
doi: 10.12118/j.issn.1000–6060.2021.01.14
|
| [25] |
秦小芳, 张华春, 张衡, 等. TerraSAR-X/TanDEM-X升降轨双基干涉模式获取DEM方法研究[J] 雷达学报, 2018, 7(4): 487-497.
|
|
[Qin Xiaofang, Zhang Huachun, Zhang Heng, et al. A high precision DEM generation method based on ascending and descending pass TerraSAR-X/TanDEM-X BiSAR data[J]. Journal of Radars, 2018, 7(4): 487-497. ]
|
| [26] |
杨婧睿. 东喀喇昆仑山典型冰川跃动特征及机理分析[D]. 湘潭: 湖南科技大学, 2022.
|
|
[Yang Jingrui. Characteristics and me-chanism analysis of typical glacier surge, east Karakoram[D]. Xiangtan: Hunan University of Science and Technology, 2022. ]
|
| [27] |
Rosen P A, Hensley S, Joughin I R, et al. Synthetic aperture radar interferometry[J]. Proceedings of the IEEE, 2000, 88(3): 333-382.
doi: 10.1109/5.838084
|
| [28] |
Bolch T, Pieczonka T, Benn D I. Multidecadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery[J]. The Cryosphere, 2011, 5(2): 349-358.
doi: 10.5194/tc-5-349-2011
|
| [29] |
DebellaGilo M, Kääb A. Subpixel precision image matching for measuring surface displacements on mass movements using normalized crosscorrelation[J]. Remote Sensing of Environment, 2011, 115(1): 130-142.
doi: 10.1016/j.rse.2010.08.012
|
| [30] |
张晓博, 赵学胜, 葛大庆, 等. 利用新型C波段雷达卫星研究南伊内里切克冰川运动特征[J]. 武汉大学学报(信息科学版), 2019, 44(3): 429-435.
|
|
[Zhang Xiaobo, Zhao Xuesheng, Ge Daqing, et al. Motion characteristics of the south Inilchek glacier derived from new C-band SAR satellite[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 429-435. ]
|
| [31] |
王振峰, 蒋宗立, 刘时银, 等. 中帕米尔甘多冰川跃动遥感监测[J]. 地球科学进展, 2022, 37(11): 1181-1193.
doi: 10.11867/j.issn.1001-8166.2022.056
|
|
[Wang Zhenfeng, Jiang Zongli, Liu Shiyin, et al. Characteristics of recent surging of Braldu glacier, central Karakoram[J]. Advances in Earth Science, 2022, 37(11): 1181-1193. ]
doi: 10.11867/j.issn.1001-8166.2022.056
|
| [32] |
王振峰, 蒋宗立, 刘时银, 等. 中喀喇昆仑布拉尔杜冰川近期跃动分析[J]. 干旱区地理, 2022, 45(4): 1032-1041.
doi: 10.12118/j.issn.1000-6060.2021.514
|
|
[Wang Zhenfeng, Jiang Zongli, Liu Shiyin, et al. Characteristics of recent surging of Braldu glacier, central Karakoram[J]. Arid Land Geography, 2022, 45(4): 1032-1041. ]
doi: 10.12118/j.issn.1000-6060.2021.514
|
| [33] |
Gray A L, Short N, Mattar K E, et al. Velocities and flux of the Filchner ice shelf and its tributaries determined from speckle tracking interferometry[J]. Canadian Journal of Remote Sensing, 2014, 27(3): 193-206.
doi: 10.1080/07038992.2001.10854936
|
| [34] |
蒋宗立, 刘时银, 许君利, 等. 应用SAR特征匹配方法估计音苏盖提冰川表面流速[J]. 冰川冻土, 2011, 33(3): 512-518.
|
|
[Jiang Zongli, Liu Shiyin, Xu Junli, et al. Using featuretracking of ALOS PALSAR images to acquire the Yengisogat glacier surface velocities[J]. Journal of Glaciology and Geocryology, 2011, 33(3): 512-518. ]
|
| [35] |
Guo L, Li J, Wu L X, et al. Investigating the recent surge in the Monomah glacier, central Kunlun Mountain range with multiple sources of remote sensing data[J]. Remote Sensing, 2020, 12(6): 966, doi: 10.3390/rs12060966.
|
| [36] |
杨佳伟, 刘巧, 罗云翼, 等. 西藏乃钦康桑地区冰川变化及原因分析[J]. 冰川冻土, 2024, 46(3): 780-794.
doi: 10.7522/j.issn.1000-0240.2024.0064
|
|
[Yang Jiawei, Liu Qiao, Luo Yunyi, et al. Glacier changes andtheir causes in Noijin Kangsang region, Xizang, China[J]. Journal of Glaciology and Geocryology, 2024, 46(3): 780-794. ]
doi: 10.7522/j.issn.1000-0240.2024.0064
|
| [37] |
李开明, 陈世峰, 康玲芬, 等. 中国大陆型冰川和海洋型冰川变化比较分析——以天山乌鲁木齐河源1号冰川和玉龙雪山白水河1号冰川为例[J]. 干旱区研究, 2018, 35(1): 12-19.
doi: 10.13866/j.azr.2018.01.02
|
|
[Li Kaiming, Chen Shifeng, Kang Lingfen, et al. Variation of continental glacier and temperate glacier in China: A case study of glacier No. 1 at the headwaters of the Urumqi River and Baishui glacier No. 1[J]. Arid Zone Research, 2018, 35(1): 12-19. ]
doi: 10.13866/j.azr.2018.01.02
|
| [38] |
Hewitt K. The Karakoram anomaly? Glacier expansion and the ‘elevation effect’, Karakoram Himalaya[J]. Mountain Research and Development, 2005, 25(4): 332-340.
doi: 10.1659/0276-4741(2005)025[0332:TKAGEA]2.0.CO;2
|
| [39] |
蒋宗立, 王磊, 张震, 等. 2000—2014年喀喇昆仑山音苏盖提冰川表面高程变化[J]. 干旱区地理, 2020, 43(1): 12-19.
|
|
[Jiang Zhongli, Wang Lei, Zhang Zhen, et al. Surface elevation changes of Yengisogat glacier between 2000 and 2014[J]. Arid Land Geography, 2020, 43(1): 12-19. ]
doi: 10.12118/j.issn.1000-6060.2020.01.02
|