Arid Land Geography ›› 2024, Vol. 47 ›› Issue (9): 1508-1517.doi: 10.12118/j.issn.1000-6060.2023.615
• Climatology and Hydrology • Previous Articles Next Articles
Received:
2023-10-31
Revised:
2023-11-30
Online:
2024-09-25
Published:
2024-09-24
Contact:
DONG Mei
E-mail:ljy9178@126.com;pr2003@126.com
LUO Jingyi, DONG Mei. Green efficiency and rebound effect of water for grain production in China: Based on the three-stage super-efficiency SBM-Malmquist model[J].Arid Land Geography, 2024, 47(9): 1508-1517.
Tab. 1
Calculation indices of water footprint and grey water footprint"
名称 | 公式 | 变量解释与单位 | 意义 | 参考来源 |
---|---|---|---|---|
参考作物蒸散量 | ET0为参考作物蒸散量(mm·d-1);Rn为净辐射;G为土壤热通量(MJ·m-2·d-1); T为日平均气温(oC);U2为风速(m·s-1);ea为饱和水汽压(kPa);eb为实际水汽压(kPa);Δ为温度曲线斜率(kPa·K-1); γ为干湿度常数(kPa·K-1)。 | 在判断气候干旱程度,评价植被耗水量等方面不可或缺。 | 唐书玥等[ 傅迎豪等[ | |
粮食作物蒸散量 | ETc为不同粮食作物的蒸散量(mm·d-1);Kc为各粮食作物系数。 | 根据不同粮食系数对参考作物蒸散量进行调整的结果。 | 唐书玥等[ 傅迎豪等[ | |
粮食全生育期需水量 | CWR为粮食在单位面积、全生育期内的需水量(m3·hm-2);n为全生育期天数(d)。 | 粮食全生育期内蒸散量的总和。 | 唐书玥等[ 陈红等[ | |
粮食生产水足迹 | TVW为粮食生产水足迹(108 m3);TCY为各地区粮食总产量(kg·hm-2);CY为单位面积粮食产量(kg·hm-2)。 | 区域内一定时期粮食生产过程中吸收和利用的水资源总量。 | 陈红等[ | |
粮食生产灰水足迹 | CWFgrey为粮食生产灰水足迹(108 m3); α为氮肥淋溶率;AR为氮肥的施用量(kg·hm-2);Cmax为达到水质标准下污染物最高浓度(mg·L-1);Cnat为水体自然容许浓度(mg·L-1)。 | 衡量水污染的指标。氮肥是农业生产用水中最主要的污染物。 | 陈红等[ |
Tab. 2
Variables and their statistical description related to green efficiency of water for grain production in China"
变量类型 | 名称 | 单位 | 均值 | 标准差 |
---|---|---|---|---|
投入变量 | 粮食生产水足迹 | 108 m3 | 1559.216 | 58.629 |
粮食播种面积 | hm2 | 2972023.846 | 2537339.253 | |
机械总动力 | 104 kW | 3288.996 | 2913.746 | |
化肥施用量 | 104 t | 185.298 | 146.572 | |
期望产出 | 粮食生产总值 | 108元 | 435.752 | 386.690 |
非期望产出 | 粮食生产灰水足迹 | 108 m3 | 9.398 | 8.014 |
环境变量 | 地区GDP | 108元 | 23788.350 | 20144.313 |
人均水资源拥有量 | m3·人-1 | 6577.653 | 24157.476 | |
粮食产值占地区GDP比重 | % | 2.296 | 2.025 |
Tab. 4
Water use efficiency of grain production in the first and third stages in China from 2010 to 2020"
地区 | 省市 | 综合技术效率 | 纯技术效率 | 规模效率 | |||||
---|---|---|---|---|---|---|---|---|---|
一阶段 | 三阶段 | 一阶段 | 三阶段 | 一阶段 | 三阶段 | ||||
东部地区 | 北京 | 0.468 | 0.081 | 0.932 | 0.535 | 0.514 | 0.153 | ||
天津 | 0.567 | 0.118 | 0.593 | 0.543 | 0.957 | 0.216 | |||
河北 | 0.476 | 0.482 | 0.505 | 0.547 | 0.947 | 0.875 | |||
辽宁 | 0.782 | 0.704 | 0.816 | 0.802 | 0.961 | 0.843 | |||
上海 | 1.000 | 0.162 | 1.000 | 0.540 | 1.000 | 0.302 | |||
江苏 | 0.837 | 0.970 | 0.978 | 0.979 | 0.859 | 0.989 | |||
浙江 | 0.623 | 0.392 | 0.694 | 0.627 | 0.911 | 0.602 | |||
福建 | 0.563 | 0.279 | 0.604 | 0.568 | 0.937 | 0.488 | |||
山东 | 0.500 | 0.549 | 0.584 | 0.609 | 0.894 | 0.908 | |||
广东 | 0.582 | 0.415 | 0.621 | 0.584 | 0.942 | 0.709 | |||
海南 | 0.425 | 0.104 | 0.442 | 0.527 | 0.960 | 0.198 | |||
中部地区 | 山西 | 0.541 | 0.385 | 0.566 | 0.585 | 0.964 | 0.645 | ||
内蒙古 | 0.634 | 0.566 | 0.656 | 0.680 | 0.964 | 0.830 | |||
吉林 | 0.725 | 0.662 | 0.758 | 0.747 | 0.956 | 0.880 | |||
黑龙江 | 0.961 | 1.000 | 1.000 | 1.000 | 0.961 | 1.000 | |||
安徽 | 0.612 | 0.646 | 0.658 | 0.703 | 0.935 | 0.916 | |||
江西 | 0.719 | 0.568 | 0.738 | 0.710 | 0.974 | 0.797 | |||
河南 | 0.497 | 0.593 | 0.624 | 0.640 | 0.854 | 0.938 | |||
湖北 | 0.635 | 0.612 | 0.671 | 0.702 | 0.947 | 0.870 | |||
湖南 | 0.673 | 0.705 | 0.754 | 0.780 | 0.914 | 0.894 | |||
西部地区 | 广西 | 0.509 | 0.426 | 0.540 | 0.586 | 0.945 | 0.725 | ||
重庆 | 0.615 | 0.337 | 0.649 | 0.614 | 0.950 | 0.547 | |||
四川 | 0.652 | 0.627 | 0.692 | 0.716 | 0.948 | 0.869 | |||
贵州 | 0.467 | 0.306 | 0.498 | 0.551 | 0.941 | 0.549 | |||
云南 | 0.434 | 0.351 | 0.456 | 0.513 | 0.952 | 0.685 | |||
西藏 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |||
陕西 | 0.433 | 0.327 | 0.459 | 0.515 | 0.945 | 0.632 | |||
甘肃 | 0.512 | 0.327 | 0.532 | 0.565 | 0.963 | 0.575 | |||
青海 | 0.370 | 0.046 | 0.620 | 0.578 | 0.596 | 0.080 | |||
宁夏 | 0.516 | 0.158 | 0.543 | 0.545 | 0.949 | 0.291 | |||
新疆 | 0.482 | 0.361 | 0.511 | 0.556 | 0.942 | 0.644 | |||
最大值 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |||
最小值 | 0.370 | 0.046 | 0.442 | 0.513 | 0.514 | 0.080 | |||
平均值 | 0.607 | 0.460 | 0.668 | 0.650 | 0.919 | 0.666 |
Tab. 5
Dynamic change indices of water use green efficiency in grain production in different regions of China from 2010 to 2020"
地区 | 省市 | EC | TC | PEC | SEC | ML |
---|---|---|---|---|---|---|
东部地区 | 北京 | 1.515 | 1.154 | 1.007 | 1.540 | 1.806 |
天津 | 0.993 | 1.134 | 1.003 | 0.979 | 1.046 | |
河北 | 0.978 | 1.166 | 0.988 | 0.984 | 1.088 | |
辽宁 | 1.030 | 1.252 | 0.993 | 0.986 | 1.200 | |
上海 | 1.128 | 1.478 | 1.004 | 1.123 | 1.148 | |
江苏 | 1.016 | 1.350 | 1.007 | 1.002 | 1.349 | |
浙江 | 1.055 | 1.368 | 1.024 | 0.969 | 1.116 | |
福建 | 0.997 | 1.221 | 1.021 | 0.969 | 1.085 | |
山东 | 0.967 | 1.156 | 0.952 | 1.020 | 1.059 | |
广东 | 0.986 | 1.204 | 1.013 | 0.970 | 1.145 | |
海南 | 0.969 | 1.156 | 1.024 | 0.950 | 1.091 | |
中部地区 | 山西 | 0.989 | 1.141 | 0.988 | 0.973 | 1.027 |
内蒙古 | 0.991 | 1.184 | 1.001 | 0.990 | 1.168 | |
吉林 | 0.968 | 1.172 | 0.979 | 0.983 | 1.102 | |
黑龙江 | 1.000 | 1.259 | 1.000 | 1.000 | 1.259 | |
安徽 | 0.981 | 1.155 | 0.988 | 0.990 | 1.100 | |
江西 | 1.010 | 1.165 | 1.023 | 0.985 | 1.164 | |
河南 | 0.974 | 1.152 | 0.974 | 1.020 | 1.051 | |
湖北 | 0.982 | 1.179 | 1.000 | 0.981 | 1.122 | |
湖南 | 0.965 | 1.184 | 0.971 | 0.984 | 1.061 | |
西部地区 | 广西 | 0.990 | 1.178 | 1.015 | 0.974 | 1.138 |
重庆 | 0.975 | 1.162 | 1.007 | 0.964 | 1.072 | |
四川 | 0.980 | 1.154 | 0.989 | 0.982 | 1.067 | |
贵州 | 0.964 | 1.134 | 0.992 | 0.956 | 1.012 | |
云南 | 0.988 | 1.135 | 1.009 | 0.979 | 1.092 | |
西藏 | 1.000 | 1.142 | 1.000 | 1.000 | 1.142 | |
陕西 | 0.974 | 1.134 | 0.995 | 0.970 | 1.046 | |
甘肃 | 0.974 | 1.136 | 0.998 | 0.969 | 1.053 | |
青海 | 0.988 | 1.125 | 1.014 | 0.975 | 1.082 | |
宁夏 | 0.975 | 1.133 | 1.012 | 0.962 | 1.058 | |
新疆 | 0.980 | 1.120 | 0.995 | 0.976 | 1.064 | |
最大值 | 1.515 | 1.478 | 1.024 | 1.540 | 1.806 | |
最小值 | 0.964 | 1.120 | 0.952 | 0.950 | 1.012 | |
平均值 | 1.009 | 1.187 | 1.000 | 1.003 | 1.129 |
Tab. 6
Calculation results of rebound effect of grain production water in China from 2010 to 2020"
地区 | 年份 | 粮食生产 用水强度 | 增加量 | 技术 贡献率 | 节约量 | 水资源回弹效应 |
---|---|---|---|---|---|---|
东部 地区 | 2012 | 1.326 | 3.197 | 2.996 | 22.181 | 2.269 |
2017 | 1.403 | -13.295 | 2.523 | -52.322 | -20.866 | |
2020 | 1.144 | 6.438 | 1.964 | 20.506 | 1.519 | |
中部 地区 | 2012 | 1.011 | 8.472 | 0.983 | 77.950 | 0.985 |
2017 | 1.484 | -40.627 | 1.207 | -273.182 | 1.309 | |
2020 | 0.902 | 9.967 | 0.497 | 65.366 | 0.395 | |
西部 地区 | 2012 | 1.077 | 3.228 | 1.171 | 31.957 | 1.132 |
2017 | 1.233 | -11.031 | 1.580 | -50.620 | 2.093 | |
2020 | 0.883 | 1.408 | 0.785 | 19.459 | 0.659 | |
全国平均 | 1.163 | -3.583 | 1.523 | -15.412 | -1.167 |
[1] |
陈杰, 许朗. 基于面板三阶段DEA-Malmquist模型的中国农业绿色水资源利用效率研究[J]. 地理科学, 2023, 43(4): 709-718.
doi: 10.13249/j.cnki.sgs.2023.04.014 |
[Chen Jie, Xu Lang. Utilization efficiency of Chinese agricultural green water resources based on panel three-stage DEA-Malmquist model[J]. Scientia Geographica Sinica, 2023, 43(4): 709-718.]
doi: 10.13249/j.cnki.sgs.2023.04.014 |
|
[2] |
孙才志, 姜坤, 赵良仕. 中国水资源绿色效率测度及空间格局研究[J]. 自然资源学报, 2017, 32(12): 1999-2011.
doi: 10.11849/zrzyxb.20161076 |
[Sun Caizhi, Jiang Kun, Zhao Liangshi. Measurement of green efficiency of water utilization and its spatial pattern in China[J]. Journal of Natural Resources, 2017, 32(12): 1999-2011.]
doi: 10.11849/zrzyxb.20161076 |
|
[3] |
褚家琦, 蒋志辉. 新疆农业水资源绿色效率时空演变及影响因素研究[J]. 干旱区地理, 2024, 47(7): 1231-1241.
doi: 10.12118/j.issn.1000-6060.2023.577 |
[Chu Jiaqi, Jiang Zhihui. Spatiotemporal evolution and influencing factors of green efficiency of agricultural water resources in Xinjiang[J]. Arid Land Geography, 2024, 47(7): 1231-1241.]
doi: 10.12118/j.issn.1000-6060.2023.577 |
|
[4] |
曹姗姗, 何昭丽, 徐力璇, 等. 区域旅游发展对水资源绿色效率的影响及其时空分异[J]. 经济地理, 2023, 43(7): 215-224.
doi: 10.15957/j.cnki.jjdl.2023.07.021 |
[Cao Shanshan, He Zhaoli, Xu Lixuan, et al. The impact of tourism development on green efficiency of water resources in China and its spatial-temporal differentiation[J]. Economic Geography, 2023, 43(7): 215-224.]
doi: 10.15957/j.cnki.jjdl.2023.07.021 |
|
[5] |
王纪凯, 张峰, 油建盛, 等. 黄河流域工业绿色水资源效率空间网络关联特征[J]. 地理科学, 2023, 43(6): 1032-1042.
doi: 10.13249/j.cnki.sgs.2023.06.010 |
[Wang Jikai, Zhang Feng, You Jiansheng, et al. Correlation characteristics of spatial network of industrial green water resources efficiency in the Yellow River Basin[J]. Scientia Geographica Sinica, 2023, 43(6): 1032-1042.]
doi: 10.13249/j.cnki.sgs.2023.06.010 |
|
[6] | Souissi A, Mtimet N, McCann L, et al. Determinants of food consumption water footprint in the Mena region: The case of Tunisia[J]. Sustainability, 2022, 14(3): 1539, doi: 10.3390/su14031539. |
[7] | Silva D L R, Rivero-Camacho C, Rusu D. Methodology for improving the sustainability of industrial buildings via matrix of combinations water and carbon footprint assessment[J]. Sustainability, 2022, 14(22): 15297, doi: 10.3390/su142215297. |
[8] | Karandish F, Hoekstra A Y. Informing national food and water security policy through water footprint assessment: The case of Iran[J]. Water, 2017, 9(11): 831, doi: 10.3390/w9110831. |
[9] | Muratoglu A. Grey water footprint of agricultural production: An assessment based on nitrogen surplus and high-resolution leaching runoff fractions in Turkey[J]. Science of the Total Environment, 2020, 742: 140553, doi: 10.1016/j.scitotenv.2020.140553. |
[10] | 胡东兰, 申颢, 刘自敏. 中国城市能源回弹效应的时空演变与形成机制研究[J]. 中国软科学, 2019(11): 96-108. |
[Hu Donglan, Shen Hao, Liu Zimin. Study on the spatial-temporal evolution and formation mechanism energy rebound effect in Chinese cities[J]. China Soft Science, 2019(11): 96-108.] | |
[11] | Nesta H, Martin D, Lekha W. Farm level effects of on-farm irrigation infrastructure programs in the southern Murray-Darling Basin[J]. Australian Economic Review, 2020, 53(4): 494-516. |
[12] | Wheeler S A, Carmody E, Grafton Q, et al. The rebound effect on water extraction from subsidising irrigation infrastructure in Australia[J]. Resources, Conservation and Recycling, 2020, 159: 104755, doi: 10.1016/j.resconrec.2020.104755. |
[13] | 陈红, 王浩坤, 秦帅. 水足迹视角下黑龙江粮食生产用水绿色效率研究——基于三阶段SBM-Malmquist指数分析法[J]. 长江流域资源与环境, 2020, 29(12): 2790-2804. |
[Chen Hong, Wang Haokun, Qin Shuai. Study on green efficiency of grain water in Heilongjiang Province from the perspective of water footprint: Based on three-stage SBM-Malmquist index analysis method[J]. Resources and Environment in the Yangtze Basin, 2020, 29(12): 2790-2804.] | |
[14] | 唐书玥, 任思琪, 李子怡, 等. 我国不同参考作物蒸散经验模型适用性分析及参数修正[J]. 中国农业大学学报, 2023, 28(10): 1-14. |
[Tang Shuyue, Ren Siqi, Li Ziyi, et al. Applicability analysis of the empirical models for evapotranspiration of different reference crops in China and their parameters corrections[J]. Journal of China Agricultural University, 2023, 28(10): 1-14.] | |
[15] |
傅迎豪, 申晓晶, 李王成, 等. 基于Hargreaves-Samani回归修正的作物参考蒸散发计算适用性研究[J]. 干旱区地理, 2022, 45(6): 1752-1760.
doi: 10.12118/j.issn.1000-6060.2022.133 |
[Fu Yinghao, Shen Xiaojing, Li Wangcheng, et al. Applicability of reference crop evapotranspiration calculation based on Hargreaves-Samani regression correction[J]. Arid Land Geography, 2022, 45(6): 1752-1760.]
doi: 10.12118/j.issn.1000-6060.2022.133 |
|
[16] | Hoekstra A Y, Chapagain A K, Aldaya M M, et al. The water footprint assessment manual: Setting the global standard[M]. London: Routledge, 2011. |
[17] | 李长红, 许海涛, 孙联合. 夏玉米形态指标、氮肥利用及抗倒特性对密度与氮肥耦合效应的响应[J]. 江苏农业科学, 2022, 50(11): 63-70. |
[Li Changhong, Xu Haitao, Sun Lianhe. Response of morphological index, nitrogen utilization and lodging resistance characteristics of summer maize to coupling effect of density and nitrogen fertilizer[J]. Jiangsu Agricultural Sciences, 2022, 50(11): 63-70.] | |
[18] | 张仔罗, 文雯, 曹硕, 等. 滴灌灌溉量和频次对小麦—青贮玉米复播体系蒸发蒸腾量和作物系数的影响[J]. 江苏农业科学, 2019, 47(13): 104-109. |
[Zhang Ziluo, Wen Wen, Cao Shuo, et al. Influences of drip irrigation amount and frequency on evapotranspiration and crop coefficient of wheat-silage corn double cropping system[J]. Jiangsu Agricultural Sciences, 2019, 47(13): 104-109.] | |
[19] | 张炜, 覃求. 水足迹视角下陕西省种植业水资源利用评价及经济发展脱钩分析[J]. 中国生态农业学报, 2019, 27(1): 153-162. |
[Zhang Wei, Qin Qiu. Decoupling analysis on water resources utilization of planting industry and economic development in Shaanxi Province from the perspective of water footprint[J]. Chinese Journal of Eco-Agriculture, 2019, 27(1): 153-162.] | |
[20] | 包菡, 傅建伟, 张雷, 等. 内蒙古典型农田地表径流氮磷流失特征[J]. 中国农技推广, 2021, 37(11): 67-69. |
[Bao Han, Fu Jianwei, Zhang Lei, et al. Characteristics of nitrogen and phosphorus loss from surface runoff in typical agricultural fields in Inner Mongolia[J]. China Agricultural Technology Extension, 2021, 37(11): 67-69.] | |
[21] | Tone K. A slacks-based measure of efficiency in data envelopment analysis[J]. European Journal of Operational Research, 2001, 130(3): 498-509. |
[22] | 吉雪强, 尚杰. 基于三阶段SBM模型的中国农业生态效率研究[J]. 中国农业资源与区划, 2021, 42(7): 210-217. |
[Ji Xueqiang, Shang Jie. A study on China’s agricultural ecological efficiency based on the third stage SBM model[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2021, 42(7): 210-217.] | |
[23] | Fare R, Grosskopf S, Knox L C A. Production frontiers: Frontmatter[M]. Cambridge: Cambridge University Press, 1993. |
[24] | 刘自敏, 朱朋虎, 邓明艳, 等. 能源效率内生化、回弹效应非对称性与减排潜力估算——基于中国城市电力数据的实证分析[J]. 南京财经大学学报, 2022(1): 64-74. |
[Liu Zimin, Zhu Penghu, Deng Mingyan, et al. Endogenous energy efficiency, rebound effect asymmetry, and emission reduction potential estimation: An empirical analysis based on city power data in China[J]. Journal of Nanjing University of Finance and Economics, 2022(1): 64-74.] | |
[25] | 崔海洋, 卓雯君, 虞虎, 等. 基于三阶段DEA模型的农业生产效率及其时空特征研究——以长江经济带为例[J]. 中国生态农业学报, 2021, 29(7): 1243-1252. |
[Cui Haiyang, Zhuo Wenjun, Yu Hu, et al. Calculation of agricultural production efficiency based on a three-stage data envelopment analysis model and analysis of the spatial-temporal characteristics: An example from the Yangtze River Economic Belt[J]. Chinese Journal of Eco-Agriculture, 2021, 29(7): 1243-1252.] | |
[26] | 李强, 魏巍, 徐康宁. 技术进步和结构调整对能源消费回弹效应的估算[J]. 中国人口·资源与环境, 2014, 24(10): 64-67. |
[Li Qiang, Wei Wei, Xu Kangning. Estimation of technological progress and structural readjustment on the energy consumption rebound effect[J]. China Population, Resources and Environment, 2014, 24(10): 64-67.] | |
[27] | 徐瑞璠, 赵敏娟, 高建中. 中国农业灰水足迹测度及时空分异研究[J]. 中国农业资源与区划, 2023, 44(10): 52-66. |
[Xu Ruifen, Zhao Minjuan, Gao Jianzhong. Measurement and spatial-temporal variation of agricultural grey water footprint in China[J]. Chinese Journal Agricultural Resources and Regional Planning, 2023, 44(10): 52-66.] |
[1] | YANG Jing, ZHOU Dongmei, MA Jing, ZHU Xiaoyan, JIN Yinli, ZHOU Fan, ZHANG Jun. Spatial and temporal matching characteristics of agricultural land and water resources in the Shule River Basin [J]. Arid Land Geography, 2023, 46(6): 982-992. |
[2] | LIU Hong-xia, FENG Yi-ming, GUAN Wen-ke. Study of current status of sand industry and carrying capacity of water resources in Xinjiang [J]. Arid Land Geography, 2020, 43(5): 1202-1209. |
[3] |
WANG Jie, LONG Aihua, YANG Guang, DENG Xiaoya, ZHANG Pei, HAI Yang, LI Yang.
Spatial relationship between crops water footprint and economic growth in Xinjiang in recent 25 years [J]. Arid Land Geography, 2019, 42(3): 526-533. |
[4] | HAN Shu,SHI Qing-dong,YU Yang,ZHANG Lv-bing. Calculation and analysis of water footprint in Xinjiang from 1999 to 2009 [J]. , 2013, 36(2): 364-370. |
|